Ko-DialoGPT

How to use

from transformers import PreTrainedTokenizerFast, GPT2LMHeadModel
import torch


device = 'cuda' if torch.cuda.is_available() else 'cpu'

tokenizer = PreTrainedTokenizerFast.from_pretrained('byeongal/Ko-DialoGPT')
model = GPT2LMHeadModel.from_pretrained('byeongal/Ko-DialoGPT').to(device)

past_user_inputs = []
generated_responses = []

while True:
    user_input = input(">> User:")
    if user_input == 'bye':
        break
    text_idx = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
    for i in range(len(generated_responses)-1, len(generated_responses)-3, -1):
        if i < 0:
            break
        encoded_vector = tokenizer.encode(generated_responses[i] + tokenizer.eos_token, return_tensors='pt')
        if text_idx.shape[-1] + encoded_vector.shape[-1] < 1000:
            text_idx = torch.cat([encoded_vector, text_idx], dim=-1)
        else:
            break
        encoded_vector = tokenizer.encode(past_user_inputs[i] + tokenizer.eos_token, return_tensors='pt')
        if text_idx.shape[-1] + encoded_vector.shape[-1] < 1000:
            text_idx = torch.cat([encoded_vector, text_idx], dim=-1)
        else:
            break
    text_idx = text_idx.to(device)
    inference_output = model.generate(
            text_idx,
            max_length=1000,
            num_beams=5,
            top_k=20,
            no_repeat_ngram_size=4,
            length_penalty=0.65,
            repetition_penalty=2.0,
        )
    inference_output = inference_output.tolist()
    bot_response = tokenizer.decode(inference_output[0][text_idx.shape[-1]:], skip_special_tokens=True)
    print(f"Bot: {bot_response}")
    past_user_inputs.append(user_input)
    generated_responses.append(bot_response)

Reference

Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.