SentenceTransformer based on jinaai/jina-embeddings-v2-base-en
This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v2-base-en on the word_orders and negation_dataset datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: jinaai/jina-embeddings-v2-base-en
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: JinaBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bwang0911/word-order-jina")
# Run inference
sentences = [
'Paint preserves wood',
'Coating protects timber',
'timber coating protects',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Datasets
word_orders
- Dataset: word_orders at 99609ac
- Size: 1,002 training samples
- Columns:
anchor
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
anchor pos neg type string string string details - min: 5 tokens
- mean: 12.34 tokens
- max: 32 tokens
- min: 5 tokens
- mean: 12.1 tokens
- max: 30 tokens
- min: 5 tokens
- mean: 11.51 tokens
- max: 24 tokens
- Samples:
anchor pos neg The river flows from the mountains to the sea
Water travels from mountain peaks to ocean
The river flows from the sea to the mountains
Train departs London for Paris
Railway journey from London heading to Paris
Train departs Paris for London
Cargo ship sails from Shanghai to Singapore
Maritime route Shanghai to Singapore
Cargo ship sails from Singapore to Shanghai
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20, "similarity_fct": "cos_sim" }
negation_dataset
- Dataset: negation_dataset at cd02256
- Size: 10,000 training samples
- Columns:
anchor
,entailment
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor entailment negative type string string string details - min: 6 tokens
- mean: 16.48 tokens
- max: 44 tokens
- min: 4 tokens
- mean: 9.63 tokens
- max: 31 tokens
- min: 5 tokens
- mean: 10.46 tokens
- max: 32 tokens
- Samples:
anchor entailment negative Two young girls are playing outside in a non-urban environment.
Two girls are playing outside.
Two girls are not playing outside.
A man with a red shirt is watching another man who is standing on top of a attached cart filled to the top.
A man is standing on top of a cart.
A man is not standing on top of a cart.
A man in a blue shirt driving a Segway type vehicle.
A person is riding a motorized vehicle.
A person is not riding a motorized vehicle.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 128warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.1149 | 10 | 2.0411 |
0.2299 | 20 | 1.5167 |
0.3448 | 30 | 0.64 |
0.4598 | 40 | 0.6058 |
0.5747 | 50 | 0.6042 |
0.6897 | 60 | 0.4193 |
0.8046 | 70 | 0.5208 |
0.9195 | 80 | 0.4864 |
1.0345 | 90 | 0.4145 |
1.1494 | 100 | 0.69 |
1.2644 | 110 | 0.9602 |
1.3793 | 120 | 0.2539 |
1.4943 | 130 | 0.2558 |
1.6092 | 140 | 0.2769 |
1.7241 | 150 | 0.2154 |
1.8391 | 160 | 0.293 |
1.9540 | 170 | 0.2598 |
2.0690 | 180 | 0.2113 |
2.1839 | 190 | 0.9366 |
2.2989 | 200 | 0.2121 |
2.4138 | 210 | 0.1486 |
2.5287 | 220 | 0.1765 |
2.6437 | 230 | 0.1438 |
2.7586 | 240 | 0.1589 |
2.8736 | 250 | 0.1869 |
2.9885 | 260 | 0.1682 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 53
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bwang0911/word-order-jina
Base model
jinaai/jina-embeddings-v2-base-en