_nougat_JawiChar_Jawi

This model is a fine-tuned version of bustamiyusoef/_base_nougat_JawiChar on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9076

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 48
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 9 2.7102
25.839 2.0 18 2.4453
14.4532 3.0 27 2.3152
13.3167 4.0 36 2.2394
12.7721 5.0 45 2.1704
12.3282 6.0 54 2.1213
11.95 7.0 63 2.0908
11.7647 8.0 72 2.0699
11.5322 9.0 81 2.0403
10.5067 10.0 90 2.0145
10.5067 11.0 99 1.9972
11.144 12.0 108 1.9812
10.9558 13.0 117 1.9762
10.8235 14.0 126 1.9503
10.6902 15.0 135 1.9419
10.4891 16.0 144 1.9322
10.5661 17.0 153 1.9327
10.353 18.0 162 1.9243
10.3232 19.0 171 1.9193
9.5265 20.0 180 1.9114
9.5265 21.0 189 1.9138
10.2046 22.0 198 1.9108
10.1763 23.0 207 1.9073
10.1397 24.0 216 1.9089
10.1327 25.0 225 1.9088
10.1044 26.0 234 1.9076

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
349M params
Tensor type
I64
·
BF16
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for bustamiyusoef/_nougat_JawiChar_Jawi

Finetuned
(2)
this model
Finetunes
1 model