Coin-CLIP 🪙 : Enhancing Coin Image Retrieval with CLIP

Model Details / 模型细节

This model (Coin-CLIP) is built upon OpenAI's CLIP (ViT-B/32) model and fine-tuned on a dataset of more than 340,000 coin images using contrastive learning techniques. This specialized model is designed to significantly improve feature extraction for coin images, leading to more accurate image-based search capabilities. Coin-CLIP combines the power of Visual Transformer (ViT) with CLIP's multimodal learning capabilities, specifically tailored for the numismatic domain.

Key Features:

  • State-of-the-art coin image retrieval;
  • Enhanced feature extraction for numismatic images;
  • Seamless integration with CLIP's multimodal learning.

本模型(Coin-CLIP) 在 OpenAI 的 CLIP (ViT-B/32) 模型基础上,利用对比学习技术在超过 340,000 张硬币图片数据上微调得到的。 Coin-CLIP 旨在提高模型针对硬币图片的特征提取能力,从而实现更准确的以图搜图功能。该模型结合了视觉变换器(ViT)的强大功能和 CLIP 的多模态学习能力,并专门针对硬币图片进行了优化。

Comparison: Coin-CLIP vs. CLIP / 效果对比

Example 1 (Left: Coin-CLIP; Right: CLIP)

1. Coin-CLIP vs. CLIP

Example 2 (Left: Coin-CLIP; Right: CLIP)

2. Coin-CLIP vs. CLIP

More examples can be found: breezedeus/Coin-CLIP: Coin CLIP .

Usage and Limitations / 使用和限制

  • Usage: This model is primarily used for extracting representation vectors from coin images, enabling efficient and precise image-based searches in a coin image database.

  • Limitations: As the model is trained specifically on coin images, it may not perform well on non-coin images.

  • 用途:此模型主要用于提取硬币图片的表示向量,以实现在硬币图像库中进行高效、精确的以图搜图。

  • 限制:由于模型是针对硬币图像进行训练的,因此在处理非硬币图像时可能效果不佳。

Documents / 文档

Model Use / 模型使用

Transformers

from PIL import Image
import requests

import torch.nn.functional as F
from transformers import CLIPProcessor, CLIPModel

model = CLIPModel.from_pretrained("breezedeus/coin-clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("breezedeus/coin-clip-vit-base-patch32")

image_fp = "path/to/coin_image.jpg"
image = Image.open(image_fp).convert("RGB")

inputs = processor(images=image, return_tensors="pt")
img_features = model.get_image_features(**inputs)
img_features = F.normalize(img_features, dim=1)

Tool / 工具

To further simplify the use of the Coin-CLIP model, we provide a simple Python library breezedeus/Coin-CLIP: Coin CLIP for quickly building a coin image retrieval engine.

为了进一步简化 Coin-CLIP 模型的使用,我们提供了一个简单的 Python 库 breezedeus/Coin-CLIP: Coin CLIP,以便快速构建硬币图像检索引擎。

Install

pip install coin_clip

Extract Feature Vectors

from coin_clip import CoinClip

# Automatically download the model from Huggingface
model = CoinClip(model_name='breezedeus/coin-clip-vit-base-patch32')
images = ['examples/10_back.jpg', 'examples/16_back.jpg']
img_feats, success_ids = model.get_image_features(images)
print(img_feats.shape)  # --> (2, 512)

More Tools can be found: breezedeus/Coin-CLIP: Coin CLIP .

Training Data / 训练数据

The model was trained on a specialized coin image dataset. This dataset includes images of various currencies' coins.

本模型使用的是专门的硬币图像数据集进行训练。这个数据集包含了多种货币的硬币图片。

Training Process / 训练过程

The model was fine-tuned on the OpenAI CLIP (ViT-B/32) pretrained model using a coin image dataset. The training process involved Contrastive Learning fine-tuning techniques and parameter settings.

模型是在 OpenAI 的 CLIP (ViT-B/32) 预训练模型的基础上,使用硬币图像数据集进行微调。训练过程采用了对比学习的微调技巧和参数设置。

Performance / 性能

This model demonstrates excellent performance in coin image retrieval tasks.

该模型在硬币图像检索任务上展现了优异的性能。

Feedback / 反馈

Where to send questions or comments about the model.

Welcome to contact the author Breezedeus.

欢迎联系作者 Breezedeus

Downloads last month
561
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using breezedeus/coin-clip-vit-base-patch32 1