metadata
language:
- pt
- en
license: cc
tags:
- text-generation-inference
- transformers
- mistral
- gguf
- brazil
- brasil
- portuguese
base_model: mistralai/Mistral-7B-Instruct-v0.2
metrics:
- name: assin2_rte f1_macro
type: assin2_rte
value: 90.13
- name: assin2_rte acc
type: assin2_rte
value: 90.16
- name: assin2_sts pearson
type: assin2_sts
value: 71.51
- name: assin2_sts mse
type: assin2_sts
value: 68.03
- name: bluex acc
type: bluex
value: 47.98
- name: enem acc
type: enem
value: 58.43
- name: faquad_nli f1_macro
type: faquad_nli
value: 64.24
- name: faquad_nli acc
type: faquad_nli
value: 67.69
- name: hatebr_offensive_binary f1_macro
type: hatebr_offensive_binary
value: 83.61
- name: hatebr_offensive_binary acc
type: hatebr_offensive_binary
value: 83.71
- name: oab_exams acc
type: oab_exams
value: 38.41
- name: portuguese_hate_speech_binary f1_macro
type: portuguese_hate_speech_binary
value: 61.87
- name: portuguese_hate_speech_binary acc
type: portuguese_hate_speech_binary
value: 63.22
pipeline_tag: text-generation
model-index:
- name: CabraMistral7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 60.81
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 46.87
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 38.59
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 90.27
name: f1-macro
- type: pearson
value: 72.25
name: pearson
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 64.35
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 83.15
name: f1-macro
- type: f1_macro
value: 64.82
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia-temp/tweetsentbr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 64.8
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
name: Open Portuguese LLM Leaderboard
Cabra Mistral 7b v2
Esse modelo é um finetune do Mistral 7b Instruct 0.2 com o dataset interno Cabra 10k. Esse modelo é optimizado para português. Ele apresenta melhoria em varios benchmarks brasileiros em comparação com o modelo base.
Exprimente o nosso demo aqui: CabraChat.
Conheça os nossos outros modelos: Cabra.
Detalhes do Modelo
Modelo: Mistral 7b Instruct 0.2
Mistral-7B-v0.1 é um modelo de transformador, com as seguintes escolhas arquitetônicas:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
dataset: Cabra 10k
Dataset interno para finetuning. Vamos lançar em breve.
Quantização / GGUF
Colocamos diversas versões (GGUF) quantanizadas no branch "quantanization".
Exemplo
<s> [INST] who is Elon Musk? [/INST]Elon Musk é um empreendedor, inventor e capitalista americano. Ele é o fundador, CEO e CTO da SpaceX, CEO da Neuralink e fundador do The Boring Company. Musk também é o proprietário do Twitter.</s>
Paramentros de trainamento
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 3
Framework
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.14.6
- Tokenizers 0.15.2
Uso
O modelo é destinado, por agora, a fins de pesquisa. As áreas e tarefas de pesquisa possíveis incluem:
- Pesquisa sobre modelos gerativos.
- Investigação e compreensão das limitações e viéses de modelos gerativos.
Proibido para uso comercial. Somente Pesquisa.
Evals
Tasks | Version | Filter | n-shot | Metric | Value | Stderr |
---|---|---|---|---|---|---|
assin2_rte | 1.1 | all | 15 | f1_macro | 0.9013 | ± 0.0043 |
all | 15 | acc | 0.9016 | ± 0.0043 | ||
assin2_sts | 1.1 | all | 15 | pearson | 0.7151 | ± 0.0074 |
all | 15 | mse | 0.6803 | ± N/A | ||
bluex | 1.1 | all | 3 | acc | 0.4798 | ± 0.0107 |
exam_id__USP_2019 | 3 | acc | 0.375 | ± 0.044 | ||
exam_id__USP_2021 | 3 | acc | 0.3462 | ± 0.0382 | ||
exam_id__USP_2020 | 3 | acc | 0.4107 | ± 0.0379 | ||
exam_id__UNICAMP_2018 | 3 | acc | 0.4815 | ± 0.0392 | ||
exam_id__UNICAMP_2020 | 3 | acc | 0.4727 | ± 0.0389 | ||
exam_id__UNICAMP_2021_1 | 3 | acc | 0.413 | ± 0.0418 | ||
exam_id__UNICAMP_2019 | 3 | acc | 0.42 | ± 0.0404 | ||
exam_id__UNICAMP_2022 | 3 | acc | 0.5897 | ± 0.0456 | ||
exam_id__USP_2022 | 3 | acc | 0.449 | ± 0.041 | ||
exam_id__USP_2024 | 3 | acc | 0.6341 | ± 0.0434 | ||
exam_id__UNICAMP_2024 | 3 | acc | 0.6 | ± 0.0422 | ||
exam_id__USP_2023 | 3 | acc | 0.5455 | ± 0.0433 | ||
exam_id__UNICAMP_2023 | 3 | acc | 0.5349 | ± 0.044 | ||
exam_id__USP_2018 | 3 | acc | 0.4815 | ± 0.0393 | ||
exam_id__UNICAMP_2021_2 | 3 | acc | 0.5098 | ± 0.0403 | ||
enem | 1.1 | all | 3 | acc | 0.5843 | ± 0.0075 |
exam_id__2010 | 3 | acc | 0.5726 | ± 0.0264 | ||
exam_id__2009 | 3 | acc | 0.6 | ± 0.0264 | ||
exam_id__2014 | 3 | acc | 0.633 | ± 0.0268 | ||
exam_id__2022 | 3 | acc | 0.6165 | ± 0.0243 | ||
exam_id__2012 | 3 | acc | 0.569 | ± 0.0265 | ||
exam_id__2013 | 3 | acc | 0.5833 | ± 0.0274 | ||
exam_id__2016_2 | 3 | acc | 0.5203 | ± 0.026 | ||
exam_id__2011 | 3 | acc | 0.6325 | ± 0.0257 | ||
exam_id__2023 | 3 | acc | 0.5778 | ± 0.0246 | ||
exam_id__2016 | 3 | acc | 0.595 | ± 0.0258 | ||
exam_id__2017 | 3 | acc | 0.5517 | ± 0.0267 | ||
exam_id__2015 | 3 | acc | 0.563 | ± 0.0261 | ||
faquad_nli | 1.1 | all | 15 | f1_macro | 0.6424 | ± 0.0138 |
all | 15 | acc | 0.6769 | ± 0.013 | ||
hatebr_offensive_binary | 1 | all | 25 | f1_macro | 0.8361 | ± 0.007 |
all | 25 | acc | 0.8371 | ± 0.007 | ||
oab_exams | 1.5 | all | 3 | acc | 0.3841 | ± 0.006 |
exam_id__2011-03 | 3 | acc | 0.3636 | ± 0.0279 | ||
exam_id__2014-14 | 3 | acc | 0.475 | ± 0.0323 | ||
exam_id__2016-21 | 3 | acc | 0.4125 | ± 0.0318 | ||
exam_id__2012-06a | 3 | acc | 0.3875 | ± 0.0313 | ||
exam_id__2014-13 | 3 | acc | 0.325 | ± 0.0303 | ||
exam_id__2015-16 | 3 | acc | 0.425 | ± 0.032 | ||
exam_id__2010-02 | 3 | acc | 0.4 | ± 0.0283 | ||
exam_id__2012-08 | 3 | acc | 0.3875 | ± 0.0314 | ||
exam_id__2011-05 | 3 | acc | 0.375 | ± 0.0312 | ||
exam_id__2017-22 | 3 | acc | 0.4 | ± 0.0316 | ||
exam_id__2018-25 | 3 | acc | 0.4125 | ± 0.0318 | ||
exam_id__2012-09 | 3 | acc | 0.3636 | ± 0.0317 | ||
exam_id__2017-24 | 3 | acc | 0.3375 | ± 0.0304 | ||
exam_id__2016-20a | 3 | acc | 0.3125 | ± 0.0299 | ||
exam_id__2012-06 | 3 | acc | 0.425 | ± 0.0318 | ||
exam_id__2013-12 | 3 | acc | 0.4375 | ± 0.0321 | ||
exam_id__2016-20 | 3 | acc | 0.45 | ± 0.0322 | ||
exam_id__2013-11 | 3 | acc | 0.4 | ± 0.0316 | ||
exam_id__2015-17 | 3 | acc | 0.4231 | ± 0.0323 | ||
exam_id__2015-18 | 3 | acc | 0.4 | ± 0.0316 | ||
exam_id__2017-23 | 3 | acc | 0.35 | ± 0.0308 | ||
exam_id__2010-01 | 3 | acc | 0.2471 | ± 0.0271 | ||
exam_id__2011-04 | 3 | acc | 0.375 | ± 0.0313 | ||
exam_id__2016-19 | 3 | acc | 0.4103 | ± 0.0321 | ||
exam_id__2013-10 | 3 | acc | 0.3375 | ± 0.0305 | ||
exam_id__2012-07 | 3 | acc | 0.3625 | ± 0.031 | ||
exam_id__2014-15 | 3 | acc | 0.3846 | ± 0.0318 | ||
portuguese_hate_speech_binary | 1 | all | 25 | f1_macro | 0.6187 | ± 0.0119 |
all | 25 | acc | 0.6322 | ± 0.0117 |
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Average | 65.1 |
ENEM Challenge (No Images) | 60.81 |
BLUEX (No Images) | 46.87 |
OAB Exams | 38.59 |
Assin2 RTE | 90.27 |
Assin2 STS | 72.25 |
FaQuAD NLI | 64.35 |
HateBR Binary | 83.15 |
PT Hate Speech Binary | 64.82 |
tweetSentBR | 64.80 |