swin-brain-abnormalities-classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1303
  • Accuracy: 0.9661

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7845 0.9639 20 0.5746 0.7661
0.4587 1.9759 41 0.2931 0.8780
0.3004 2.9880 62 0.2784 0.8949
0.2379 4.0 83 0.1557 0.9356
0.1845 4.9639 103 0.1520 0.9492
0.1445 5.9759 124 0.1450 0.9525
0.1557 6.9880 145 0.1189 0.9525
0.1503 8.0 166 0.1201 0.9559
0.1446 8.9639 186 0.1279 0.9627
0.1368 9.9759 207 0.1393 0.9593
0.111 10.9880 228 0.1771 0.9627
0.118 12.0 249 0.1591 0.9627
0.099 12.9639 269 0.1527 0.9593
0.0888 13.9759 290 0.1668 0.9559
0.0768 14.9880 311 0.1303 0.9661
0.0776 16.0 332 0.1430 0.9661
0.0853 16.9639 352 0.1605 0.9593
0.07 17.9759 373 0.1659 0.9593
0.0705 18.9880 394 0.1455 0.9593
0.0712 19.2771 400 0.1451 0.9593

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
67
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bombshelll/swin-brain-abnormalities-classification

Finetuned
(492)
this model