SentenceTransformer based on microsoft/deberta-v3-small

This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/deberta-v3-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAll")
# Run inference
sentences = [
    'A professional swimmer spits water out after surfacing while grabbing the hand of someone helping him back to land.',
    'The swimmer almost drowned after being sucked under a fast current.',
    'A group of people wait in a line.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.7641
spearman_cosine 0.7637
pearson_manhattan 0.7809
spearman_manhattan 0.784
pearson_euclidean 0.7714
spearman_euclidean 0.7751
pearson_dot 0.5877
spearman_dot 0.601
pearson_max 0.7809
spearman_max 0.784

Binary Classification

Metric Value
cosine_accuracy 0.6774
cosine_accuracy_threshold 0.583
cosine_f1 0.721
cosine_f1_threshold 0.5085
cosine_precision 0.6137
cosine_recall 0.8737
cosine_ap 0.7219
dot_accuracy 0.6389
dot_accuracy_threshold 45.1017
dot_f1 0.709
dot_f1_threshold 32.4594
dot_precision 0.5775
dot_recall 0.9181
dot_ap 0.6795
manhattan_accuracy 0.6625
manhattan_accuracy_threshold 158.2949
manhattan_f1 0.7041
manhattan_f1_threshold 178.5048
manhattan_precision 0.5921
manhattan_recall 0.8684
manhattan_ap 0.7054
euclidean_accuracy 0.6579
euclidean_accuracy_threshold 7.9514
euclidean_f1 0.7015
euclidean_f1_threshold 9.0452
euclidean_precision 0.5889
euclidean_recall 0.8675
euclidean_ap 0.7024
max_accuracy 0.6774
max_accuracy_threshold 158.2949
max_f1 0.721
max_f1_threshold 178.5048
max_precision 0.6137
max_recall 0.9181
max_ap 0.7219

Training Details

Training Dataset

stanfordnlp/snli

  • Dataset: stanfordnlp/snli at cdb5c3d
  • Size: 314,315 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 5 tokens
    • mean: 16.62 tokens
    • max: 62 tokens
    • min: 4 tokens
    • mean: 9.46 tokens
    • max: 29 tokens
    • 0: 100.00%
  • Samples:
    sentence1 sentence2 label
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. 0
    Children smiling and waving at camera There are children present 0
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. 0
  • Loss: AdaptiveLayerLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "n_layers_per_step": -1,
        "last_layer_weight": 1,
        "prior_layers_weight": 1,
        "kl_div_weight": 1.2,
        "kl_temperature": 1.2
    }
    

Evaluation Dataset

sentence-transformers/stsb

  • Dataset: sentence-transformers/stsb at ab7a5ac
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 14.77 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 14.74 tokens
    • max: 49 tokens
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A man with a hard hat is dancing. A man wearing a hard hat is dancing. 1.0
    A young child is riding a horse. A child is riding a horse. 0.95
    A man is feeding a mouse to a snake. The man is feeding a mouse to the snake. 1.0
  • Loss: AdaptiveLayerLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "n_layers_per_step": -1,
        "last_layer_weight": 1,
        "prior_layers_weight": 1,
        "kl_div_weight": 1.2,
        "kl_temperature": 1.2
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • learning_rate: 5e-06
  • weight_decay: 1e-07
  • warmup_ratio: 0.33
  • save_safetensors: False
  • fp16: True
  • push_to_hub: True
  • hub_model_id: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAlln
  • hub_strategy: checkpoint
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-06
  • weight_decay: 1e-07
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.33
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: False
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAlln
  • hub_strategy: checkpoint
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss max_ap spearman_cosine
None 0 - 5.4171 - 0.4276
0.1501 1474 4.9879 - - -
0.3000 2947 - 2.6463 0.6840 -
0.3001 2948 3.2669 - - -
0.4502 4422 2.6363 - - -
0.6000 5894 - 1.8436 0.7014 -
0.6002 5896 2.192 - - -
0.7503 7370 0.8208 - - -
0.9000 8841 - 1.5551 0.7065 -
0.9003 8844 0.6161 - - -
1.0504 10318 1.0301 - - -
1.2000 11788 - 1.1883 0.7131 -
1.2004 11792 1.8209 - - -
1.3505 13266 1.6887 - - -
1.5001 14735 - 1.1067 0.7119 -
1.5006 14740 1.6114 - - -
1.6506 16214 1.0691 - - -
1.8001 17682 - 1.0872 0.7183 -
1.8007 17688 0.3982 - - -
1.9507 19162 0.3659 - - -
2.1001 20629 - 0.9642 0.7221 -
2.1008 20636 1.1702 - - -
2.2508 22110 1.4984 - - -
2.4001 23576 - 0.9437 0.7200 -
2.4009 23584 1.4609 - - -
2.5510 25058 1.4477 - - -
2.7001 26523 - 0.9428 0.7216 -
2.7010 26532 0.5802 - - -
2.8511 28006 0.3297 - - -
3.0 29469 - 0.9532 0.7219 -
None 0 - 2.4079 0.7219 0.7637

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2
  • Accelerate: 0.30.1
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

AdaptiveLayerLoss

@misc{li20242d,
    title={2D Matryoshka Sentence Embeddings}, 
    author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
    year={2024},
    eprint={2402.14776},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
265
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAll

Finetuned
(135)
this model

Datasets used to train bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAll

Space using bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAll 1

Collection including bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAll

Evaluation results