vit-msn-small-ultralytics_yolo_cropped_lateral_flow_ivalidation

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4550
  • Accuracy: 0.8373

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9032 7 0.6079 0.7263
0.4464 1.9355 15 0.4912 0.8107
0.3464 2.9677 23 0.6082 0.6820
0.2864 4.0 31 0.5636 0.7234
0.2864 4.9032 38 0.4431 0.8121
0.2617 5.9355 46 0.5066 0.7322
0.2504 6.9677 54 0.4550 0.8373
0.2319 8.0 62 0.7023 0.6686
0.2319 8.9032 69 0.6887 0.6346
0.2338 9.9355 77 0.5075 0.8107
0.2163 10.9677 85 0.6170 0.7189
0.2024 12.0 93 0.7783 0.6139
0.2027 12.9032 100 0.9525 0.5059
0.2027 13.9355 108 0.7353 0.6805
0.2086 14.9677 116 0.7734 0.6479
0.1921 16.0 124 0.9112 0.5251
0.1827 16.9032 131 0.6997 0.6997
0.1827 17.9355 139 0.7572 0.6731
0.1854 18.9677 147 0.6843 0.7041
0.172 20.0 155 0.7237 0.6997
0.1703 20.9032 162 0.7698 0.6598
0.1587 21.9355 170 0.7597 0.6420
0.1587 22.9677 178 0.8517 0.5976
0.1673 24.0 186 0.6763 0.6672
0.1474 24.9032 193 0.8353 0.6420
0.1512 25.9355 201 0.7117 0.6953
0.1512 26.9677 209 0.8383 0.6169
0.1427 28.0 217 1.0619 0.5399
0.1501 28.9032 224 0.7946 0.6760
0.1325 29.9355 232 1.0962 0.5222
0.1314 30.9677 240 0.8824 0.6183
0.1314 32.0 248 0.8409 0.6331
0.1294 32.9032 255 0.8754 0.6021
0.1204 33.9355 263 0.8036 0.6716
0.1218 34.9677 271 0.8477 0.6568
0.1218 36.0 279 0.8739 0.6331
0.1217 36.1290 280 0.8748 0.6331

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
21.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bmedeiros/vit-msn-small-ultralytics_yolo_cropped_lateral_flow_ivalidation

Finetuned
(12)
this model

Evaluation results