bmedeiros's picture
End of training
7f1edb1 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-lf-invalidation
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.951063829787234

vit-base-patch16-224-in21k-finetuned-lf-invalidation

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1798
  • Accuracy: 0.9511

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6773 0.9796 12 0.6550 0.5681
0.5982 1.9592 24 0.5839 0.6362
0.479 2.9388 36 0.4356 0.8894
0.3862 4.0 49 0.2807 0.9362
0.2498 4.9796 61 0.2599 0.9128
0.2836 5.9592 73 0.5015 0.7745
0.2641 6.9388 85 0.5500 0.7340
0.2716 8.0 98 0.3083 0.8787
0.2382 8.9796 110 0.2885 0.8936
0.1985 9.9592 122 0.1798 0.9511
0.2174 10.9388 134 0.3060 0.8766
0.2372 12.0 147 0.3084 0.8702
0.2164 12.9796 159 0.2667 0.9021
0.2106 13.9592 171 0.3747 0.8447
0.1956 14.9388 183 0.5105 0.7851
0.2154 16.0 196 0.5683 0.7787
0.179 16.9796 208 0.4279 0.8340
0.2548 17.9592 220 0.6493 0.7404
0.236 18.9388 232 0.3860 0.8340
0.2121 20.0 245 0.5826 0.7766
0.1691 20.9796 257 0.3195 0.8638
0.1824 21.9592 269 0.3772 0.8404
0.1733 22.9388 281 0.5182 0.7936
0.1837 24.0 294 0.4924 0.8149
0.1274 24.9796 306 0.3895 0.8447
0.1415 25.9592 318 0.3662 0.8532
0.186 26.9388 330 0.4347 0.8447
0.1403 28.0 343 0.4490 0.8383
0.1635 28.9796 355 0.7771 0.7085
0.2135 29.9592 367 0.3503 0.8702
0.1456 30.9388 379 0.3815 0.8617
0.1634 32.0 392 0.2810 0.9
0.1308 32.9796 404 0.4643 0.8383
0.163 33.9592 416 0.3337 0.8787
0.1736 34.9388 428 0.4070 0.8553
0.1638 36.0 441 0.4142 0.8574
0.1488 36.9796 453 0.5039 0.8170
0.148 37.9592 465 0.5767 0.7745
0.1741 38.9388 477 0.4842 0.8255
0.1338 40.0 490 0.7236 0.7234
0.1302 40.9796 502 0.5295 0.8043
0.141 41.9592 514 0.5294 0.8085
0.1461 42.9388 526 0.5485 0.7979
0.1006 44.0 539 0.5453 0.7915
0.1317 44.9796 551 0.5930 0.7681
0.1069 45.9592 563 0.4976 0.8170
0.1531 46.9388 575 0.5105 0.8064
0.155 48.0 588 0.6128 0.7638
0.1237 48.9796 600 0.6180 0.7617

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1