metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8071570576540755
swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4697
- Accuracy: 0.8072
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8889 | 6 | 0.6376 | 0.6899 |
0.6757 | 1.9259 | 13 | 0.6053 | 0.6938 |
0.5472 | 2.9630 | 20 | 0.5903 | 0.7256 |
0.5472 | 4.0 | 27 | 0.5782 | 0.7316 |
0.4628 | 4.8889 | 33 | 0.5979 | 0.7455 |
0.4181 | 5.9259 | 40 | 0.5735 | 0.7614 |
0.4181 | 6.9630 | 47 | 0.5252 | 0.7495 |
0.4079 | 8.0 | 54 | 0.5363 | 0.7475 |
0.4102 | 8.8889 | 60 | 0.5289 | 0.7495 |
0.4102 | 9.9259 | 67 | 0.5227 | 0.7535 |
0.373 | 10.9630 | 74 | 0.4677 | 0.7773 |
0.3639 | 12.0 | 81 | 0.4978 | 0.7813 |
0.3639 | 12.8889 | 87 | 0.4651 | 0.7992 |
0.3779 | 13.9259 | 94 | 0.4738 | 0.7913 |
0.3476 | 14.9630 | 101 | 0.4697 | 0.8072 |
0.3476 | 16.0 | 108 | 0.4719 | 0.7952 |
0.3467 | 16.8889 | 114 | 0.4552 | 0.7893 |
0.3496 | 17.9259 | 121 | 0.5186 | 0.7714 |
0.3496 | 18.9630 | 128 | 0.4575 | 0.7952 |
0.3657 | 20.0 | 135 | 0.4764 | 0.7793 |
0.3888 | 20.8889 | 141 | 0.5009 | 0.7714 |
0.3888 | 21.9259 | 148 | 0.4673 | 0.7813 |
0.3236 | 22.9630 | 155 | 0.4931 | 0.7753 |
0.3179 | 24.0 | 162 | 0.4837 | 0.7654 |
0.3179 | 24.8889 | 168 | 0.4652 | 0.7694 |
0.327 | 25.9259 | 175 | 0.5108 | 0.7495 |
0.3253 | 26.9630 | 182 | 0.4424 | 0.7833 |
0.3253 | 28.0 | 189 | 0.5622 | 0.7336 |
0.3382 | 28.8889 | 195 | 0.5068 | 0.7694 |
0.331 | 29.9259 | 202 | 0.4530 | 0.7694 |
0.331 | 30.9630 | 209 | 0.5205 | 0.7316 |
0.3302 | 32.0 | 216 | 0.4386 | 0.7853 |
0.2972 | 32.8889 | 222 | 0.5031 | 0.7773 |
0.2972 | 33.9259 | 229 | 0.4909 | 0.7575 |
0.3121 | 34.9630 | 236 | 0.4766 | 0.7793 |
0.2956 | 36.0 | 243 | 0.5262 | 0.7416 |
0.2956 | 36.8889 | 249 | 0.5374 | 0.7316 |
0.2947 | 37.9259 | 256 | 0.4888 | 0.7674 |
0.2662 | 38.9630 | 263 | 0.4881 | 0.7694 |
0.2826 | 40.0 | 270 | 0.4669 | 0.7893 |
0.2826 | 40.8889 | 276 | 0.4591 | 0.7972 |
0.2768 | 41.9259 | 283 | 0.5090 | 0.7575 |
0.2836 | 42.9630 | 290 | 0.5250 | 0.7495 |
0.2836 | 44.0 | 297 | 0.4748 | 0.7654 |
0.2724 | 44.8889 | 303 | 0.4429 | 0.7833 |
0.2498 | 45.9259 | 310 | 0.4460 | 0.7893 |
0.2498 | 46.9630 | 317 | 0.4722 | 0.7793 |
0.2893 | 48.0 | 324 | 0.4799 | 0.7714 |
0.2618 | 48.8889 | 330 | 0.4850 | 0.7714 |
0.2618 | 49.9259 | 337 | 0.5152 | 0.7495 |
0.2664 | 50.9630 | 344 | 0.5347 | 0.7396 |
0.27 | 52.0 | 351 | 0.5343 | 0.7416 |
0.27 | 52.8889 | 357 | 0.5330 | 0.7416 |
0.2539 | 53.3333 | 360 | 0.5320 | 0.7396 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1