bmedeiros's picture
End of training
494c434 verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8071570576540755

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4697
  • Accuracy: 0.8072

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8889 6 0.6376 0.6899
0.6757 1.9259 13 0.6053 0.6938
0.5472 2.9630 20 0.5903 0.7256
0.5472 4.0 27 0.5782 0.7316
0.4628 4.8889 33 0.5979 0.7455
0.4181 5.9259 40 0.5735 0.7614
0.4181 6.9630 47 0.5252 0.7495
0.4079 8.0 54 0.5363 0.7475
0.4102 8.8889 60 0.5289 0.7495
0.4102 9.9259 67 0.5227 0.7535
0.373 10.9630 74 0.4677 0.7773
0.3639 12.0 81 0.4978 0.7813
0.3639 12.8889 87 0.4651 0.7992
0.3779 13.9259 94 0.4738 0.7913
0.3476 14.9630 101 0.4697 0.8072
0.3476 16.0 108 0.4719 0.7952
0.3467 16.8889 114 0.4552 0.7893
0.3496 17.9259 121 0.5186 0.7714
0.3496 18.9630 128 0.4575 0.7952
0.3657 20.0 135 0.4764 0.7793
0.3888 20.8889 141 0.5009 0.7714
0.3888 21.9259 148 0.4673 0.7813
0.3236 22.9630 155 0.4931 0.7753
0.3179 24.0 162 0.4837 0.7654
0.3179 24.8889 168 0.4652 0.7694
0.327 25.9259 175 0.5108 0.7495
0.3253 26.9630 182 0.4424 0.7833
0.3253 28.0 189 0.5622 0.7336
0.3382 28.8889 195 0.5068 0.7694
0.331 29.9259 202 0.4530 0.7694
0.331 30.9630 209 0.5205 0.7316
0.3302 32.0 216 0.4386 0.7853
0.2972 32.8889 222 0.5031 0.7773
0.2972 33.9259 229 0.4909 0.7575
0.3121 34.9630 236 0.4766 0.7793
0.2956 36.0 243 0.5262 0.7416
0.2956 36.8889 249 0.5374 0.7316
0.2947 37.9259 256 0.4888 0.7674
0.2662 38.9630 263 0.4881 0.7694
0.2826 40.0 270 0.4669 0.7893
0.2826 40.8889 276 0.4591 0.7972
0.2768 41.9259 283 0.5090 0.7575
0.2836 42.9630 290 0.5250 0.7495
0.2836 44.0 297 0.4748 0.7654
0.2724 44.8889 303 0.4429 0.7833
0.2498 45.9259 310 0.4460 0.7893
0.2498 46.9630 317 0.4722 0.7793
0.2893 48.0 324 0.4799 0.7714
0.2618 48.8889 330 0.4850 0.7714
0.2618 49.9259 337 0.5152 0.7495
0.2664 50.9630 344 0.5347 0.7396
0.27 52.0 351 0.5343 0.7416
0.27 52.8889 357 0.5330 0.7416
0.2539 53.3333 360 0.5320 0.7396

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1