YAML Metadata Error: "language[0]" must only contain lowercase characters
YAML Metadata Error: "language[0]" with value "sv-SE" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.

wav2vec2-common_voice-tr-demo

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the COMMON_VOICE - SV-SE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5528
  • Wer: 0.3811

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.74 100 3.4444 1.0
No log 1.47 200 2.9421 1.0
No log 2.21 300 2.2802 1.0137
No log 2.94 400 0.9683 0.7611
3.7264 3.68 500 0.7941 0.6594
3.7264 4.41 600 0.6695 0.5751
3.7264 5.15 700 0.6507 0.5314
3.7264 5.88 800 0.5731 0.4927
3.7264 6.62 900 0.5723 0.4580
0.4592 7.35 1000 0.5913 0.4479
0.4592 8.09 1100 0.5562 0.4423
0.4592 8.82 1200 0.5566 0.4292
0.4592 9.56 1300 0.5492 0.4303
0.4592 10.29 1400 0.5665 0.4331
0.2121 11.03 1500 0.5610 0.4084
0.2121 11.76 1600 0.5703 0.4014
0.2121 12.5 1700 0.5669 0.3898
0.2121 13.24 1800 0.5586 0.3962
0.2121 13.97 1900 0.5656 0.3897
0.1326 14.71 2000 0.5565 0.3813

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu113
  • Datasets 1.18.0
  • Tokenizers 0.10.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train birgermoell/wav2vec2-common_voice-tr-demo