sd3-lora-test / README.md
PseudoTerminal X
Model card auto-generated by SimpleTuner
6cbebdc verified
|
raw
history blame
2.53 kB
metadata
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-3-medium-diffusers
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - lora
  - template:sd-lora
inference: true
widget:
  - text: a psychedelic man is surfing on top of a horse
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_0_0.png

sd3-lora-test

This is a LoRA derived from stabilityai/stable-diffusion-3-medium-diffusers.

The main validation prompt used during training was:

a psychedelic man is surfing on top of a horse

Validation settings

  • CFG: 5.0
  • CFG Rescale: 0.2
  • Steps: 50
  • Sampler: euler
  • Seed: 2
  • Resolution: 1280x768

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
a psychedelic man is surfing on top of a horse
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0
  • Training steps: 96
  • Learning rate: 1e-06
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: v_prediction
  • Rescaled betas zero SNR: True
  • Optimizer: AdamW, stochastic bf16
  • Precision: Pure BF16
  • Xformers: Not used
  • LoRA Rank: 16
  • LoRA Alpha: 16
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

celebrities

  • Repeats: 0
  • Total number of images: 1253
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

Inference

import torchfrom diffusers import StableDiffusion3Pipeline


model_id = "sd3-lora-test"
prompt = "a psychedelic man is surfing on top of a horse"
negative_prompt = "malformed, disgusting, overexposed, washed-out"

pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt='blurry, cropped, ugly',
    num_inference_steps=50,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1152,
    height=768,
    guidance_scale=5.0,
    guidance_rescale=0.2,
).images[0]
image.save(f"output.png", format="PNG")