metadata
base_model:
- benhaotang/Phi-4-llama-t1-full
- prithivMLmods/Phi-4-QwQ
- win10/Phi-4-llama-t1-lora
library_name: transformers
tags:
- mergekit
- merge
datasets:
- NovaSky-AI/Sky-T1_data_17k
license: mit
model-index:
- name: phi4-qwq-sky-t1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 4.6
name: averaged accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 52.61
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 39.58
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 19.35
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 21.38
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.16
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1
name: Open LLM Leaderboard
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the TIES merge method using prithivMLmods/Phi-4-QwQ as a base.
Models Merged
The following models were included in the merge:
- benhaotang/Phi-4-llama-t1-full but actually win10/Phi-4-llama-t1-lora, this is who and where you should really thank.
- prithivMLmods/Phi-4-QwQ
Eval
IFEval is broken due to the Sky-T1 strict system prompt format, but other than that, seems to have recreated qwq at 14B.
Running
- With Ollama
ollama run hf.co/benhaotang/phi4-qwq-sky-t1-Q4_K_M-GGUF
I suggest adding SYSTEM "You are a helpful AI asistent. You always think step by step."
to triger step by step reasoning.
- With pytorch
import transformers
tokenizer = AutoTokenizer.from_pretrained("mircosoft/phi-4")
pipeline = transformers.pipeline(
"text-generation",
model="benhaotang/phi4-qwq-sky-t1",
tokenizer=tokenizer,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a helpful AI asistent. You always think step by step."},
{"role": "user", "content": "Give me a short intodcution to renormalization group(RG) flow in physcis?"},
]
outputs = pipeline(messages, max_new_tokens=128)
print(outputs[0]["generated_text"])
Configuration
The following YAML configuration was used to produce this model:
models:
- model: prithivMLmods/Phi-4-QwQ
#no parameters necessary for base model
- model: benhaotang/Phi-4-llama-t1-full
parameters:
density: 0.5
weight: 0.5
- model: prithivMLmods/Phi-4-QwQ
parameters:
density: 0.5
weight: 0.5
merge_method: ties
base_model: prithivMLmods/Phi-4-QwQ
parameters:
normalize: false
int8_mask: true
dtype: float16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here! Summarized results can be found here!
Metric | Value (%) |
---|---|
Average | 30.78 |
IFEval (0-Shot) | 4.60 |
BBH (3-Shot) | 52.61 |
MATH Lvl 5 (4-Shot) | 39.58 |
GPQA (0-shot) | 19.35 |
MuSR (0-shot) | 21.38 |
MMLU-PRO (5-shot) | 47.16 |