beingbatman's picture
Model save
76e062c verified
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large-finetuned-kinetics
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: MAE-CT-CPC-Dicotomized-v6-Day1
    results: []

MAE-CT-CPC-Dicotomized-v6-Day1

This model is a fine-tuned version of MCG-NJU/videomae-large-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2706
  • Accuracy: 0.7333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 2750

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.638 0.02 56 0.6488 0.64
0.7032 1.02 112 0.6394 0.64
0.6243 2.02 168 0.5943 0.64
0.6339 3.02 224 0.6504 0.6
0.6566 4.02 280 0.6405 0.64
0.4056 5.02 336 0.6274 0.64
0.3523 6.02 392 0.9109 0.64
0.4581 7.02 448 0.4675 0.8
0.3648 8.02 504 0.5780 0.76
0.4622 9.02 560 1.1120 0.64
0.5836 10.02 616 0.6369 0.76
0.316 11.02 672 0.8769 0.64
0.135 12.02 728 0.6827 0.72
0.0817 13.02 784 0.9667 0.64
0.5254 14.02 840 0.7442 0.76
0.2692 15.02 896 0.5944 0.84
0.0177 16.02 952 1.0163 0.76
0.0386 17.02 1008 0.8789 0.76
0.2142 18.02 1064 1.0580 0.68
0.0653 19.02 1120 0.9189 0.72
0.0004 20.02 1176 1.1913 0.76
0.0006 21.02 1232 1.1668 0.72
0.0006 22.02 1288 1.2782 0.76
0.0003 23.02 1344 1.2591 0.76
0.0004 24.02 1400 1.5768 0.72
0.0431 25.02 1456 1.1632 0.8
0.008 26.02 1512 1.4113 0.76
0.0003 27.02 1568 1.2239 0.76
0.003 28.02 1624 1.7195 0.72
0.3129 29.02 1680 1.9161 0.68
0.0001 30.02 1736 1.4177 0.76
0.0001 31.02 1792 1.4688 0.68
0.0314 32.02 1848 1.4026 0.68
0.0001 33.02 1904 1.5846 0.72
0.0001 34.02 1960 1.4021 0.64
0.0002 35.02 2016 1.5994 0.72
0.0001 36.02 2072 1.4027 0.72
0.0002 37.02 2128 1.3608 0.76
0.0001 38.02 2184 1.3569 0.8
0.0001 39.02 2240 1.4026 0.8
0.0001 40.02 2296 1.4563 0.72
0.0028 41.02 2352 1.3389 0.76
0.0001 42.02 2408 1.3355 0.8
0.0001 43.02 2464 1.3445 0.8
0.0001 44.02 2520 1.3526 0.8
0.0001 45.02 2576 1.3842 0.72
0.0001 46.02 2632 1.3895 0.72
0.0025 47.02 2688 1.4828 0.76
0.0001 48.02 2744 1.4092 0.76
0.2131 49.0 2750 1.4071 0.76

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.0.1+cu117
  • Datasets 3.0.1
  • Tokenizers 0.15.1