Visualize in Weights & Biases

xlsr-he

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1042
  • Wer: 0.5618
  • Cer: 0.1990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
4.8209 0.8368 100 4.9679 1.0 1.0
3.197 1.6736 200 3.5446 1.0 1.0
3.3296 2.5105 300 3.4076 1.0 1.0
2.3184 3.3473 400 2.7358 1.0137 0.6925
1.058 4.1841 500 1.4893 0.9039 0.4332
0.7087 5.0209 600 1.2311 0.8541 0.3847
0.5416 5.8577 700 1.0641 0.8256 0.3603
0.5273 6.6946 800 1.1168 0.8699 0.3384
0.5321 7.5314 900 1.1116 0.8200 0.3271
0.3195 8.3682 1000 1.0792 0.8480 0.3287
0.2597 9.2050 1100 1.0042 0.7433 0.3017
0.3101 10.0418 1200 1.0282 0.7255 0.2903
0.2546 10.8787 1300 0.9019 0.7265 0.2759
0.1811 11.7155 1400 1.0079 0.7107 0.2734
0.1583 12.5523 1500 1.1007 0.7356 0.2847
0.1904 13.3891 1600 1.1371 0.6843 0.2708
0.1575 14.2259 1700 1.1959 0.6889 0.2704
0.1265 15.0628 1800 1.1985 0.7428 0.2853
0.113 15.8996 1900 1.1250 0.6762 0.2611
0.17 16.7364 2000 1.1427 0.6980 0.2695
0.1124 17.5732 2100 1.1954 0.7062 0.2720
0.1232 18.4100 2200 1.1302 0.6706 0.2495
0.1115 19.2469 2300 1.1399 0.6741 0.2604
0.1016 20.0837 2400 1.1784 0.6441 0.2436
0.1455 20.9205 2500 1.2145 0.6751 0.2485
0.074 21.7573 2600 1.2742 0.6304 0.2545
0.0654 22.5941 2700 1.0912 0.6146 0.2266
0.1123 23.4310 2800 1.0622 0.6350 0.2352
0.1563 24.2678 2900 1.0540 0.6416 0.2318
0.0716 25.1046 3000 1.0769 0.6304 0.2331
0.1085 25.9414 3100 1.0909 0.5979 0.2212
0.1026 26.7782 3200 1.1154 0.6075 0.2227
0.0872 27.6151 3300 1.1303 0.6268 0.2301
0.0761 28.4519 3400 1.0749 0.6187 0.2300
0.1127 29.2887 3500 1.0718 0.6121 0.2205
0.0598 30.1255 3600 1.1657 0.6223 0.2264
0.096 30.9623 3700 1.1789 0.5938 0.2179
0.075 31.7992 3800 1.2492 0.6380 0.2350
0.057 32.6360 3900 1.2094 0.6263 0.2274
0.1077 33.4728 4000 1.1825 0.6040 0.2209
0.0455 34.3096 4100 1.1660 0.6136 0.2201
0.0688 35.1464 4200 1.1257 0.6050 0.2191
0.064 35.9833 4300 1.1346 0.5867 0.2122
0.0383 36.8201 4400 1.1975 0.6009 0.2180
0.0397 37.6569 4500 1.1697 0.5989 0.2177
0.0447 38.4937 4600 1.2174 0.6040 0.2186
0.0545 39.3305 4700 1.1958 0.5994 0.2184
0.0531 40.1674 4800 1.1707 0.5902 0.2127
0.1481 41.0042 4900 1.1475 0.5770 0.2071
0.0427 41.8410 5000 1.1719 0.5892 0.2114
0.0242 42.6778 5100 1.0977 0.5740 0.2053
0.0398 43.5146 5200 1.1135 0.5694 0.2063
0.037 44.3515 5300 1.1234 0.5735 0.2086
0.0255 45.1883 5400 1.1127 0.5740 0.2040
0.0467 46.0251 5500 1.1123 0.5653 0.1998
0.0261 46.8619 5600 1.1039 0.5719 0.2008
0.0512 47.6987 5700 1.1167 0.5679 0.2011
0.0551 48.5356 5800 1.1126 0.5648 0.1990
0.0373 49.3724 5900 1.1042 0.5618 0.1990

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for badrex/xlsr-he

Finetuned
(556)
this model

Evaluation results