metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: xls-r-300-cv17-polish-adap-ru
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: pl
split: validation
args: pl
metrics:
- name: Wer
type: wer
value: 0.29855366457663735
xls-r-300-cv17-polish-adap-ru
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4087
- Wer: 0.2986
- Cer: 0.0652
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
3.2673 | 1.6 | 100 | 3.3121 | 1.0 | 1.0 |
1.2344 | 3.2 | 200 | 1.1417 | 0.8846 | 0.2502 |
0.4279 | 4.8 | 300 | 0.4485 | 0.4848 | 0.1082 |
0.2415 | 6.4 | 400 | 0.3752 | 0.3971 | 0.0871 |
0.2634 | 8.0 | 500 | 0.4058 | 0.4148 | 0.0927 |
0.1683 | 9.6 | 600 | 0.4079 | 0.3906 | 0.0887 |
0.1356 | 11.2 | 700 | 0.4017 | 0.3927 | 0.0872 |
0.0887 | 12.8 | 800 | 0.4094 | 0.3867 | 0.0874 |
0.1529 | 14.4 | 900 | 0.4055 | 0.3728 | 0.0843 |
0.1206 | 16.0 | 1000 | 0.4030 | 0.3709 | 0.0824 |
0.0573 | 17.6 | 1100 | 0.4370 | 0.3787 | 0.0841 |
0.073 | 19.2 | 1200 | 0.4157 | 0.3653 | 0.0819 |
0.0498 | 20.8 | 1300 | 0.4235 | 0.3637 | 0.0811 |
0.0987 | 22.4 | 1400 | 0.4153 | 0.3526 | 0.0786 |
0.0791 | 24.0 | 1500 | 0.4239 | 0.3557 | 0.0802 |
0.0698 | 25.6 | 1600 | 0.4253 | 0.3473 | 0.0779 |
0.0745 | 27.2 | 1700 | 0.4092 | 0.3518 | 0.0784 |
0.0689 | 28.8 | 1800 | 0.4326 | 0.3433 | 0.0764 |
0.059 | 30.4 | 1900 | 0.4207 | 0.3342 | 0.0738 |
0.0255 | 32.0 | 2000 | 0.4053 | 0.3272 | 0.0726 |
0.0403 | 33.6 | 2100 | 0.4267 | 0.3264 | 0.0715 |
0.0281 | 35.2 | 2200 | 0.4141 | 0.3250 | 0.0719 |
0.0533 | 36.8 | 2300 | 0.4242 | 0.3252 | 0.0718 |
0.0503 | 38.4 | 2400 | 0.4062 | 0.3147 | 0.0690 |
0.0292 | 40.0 | 2500 | 0.4109 | 0.3081 | 0.0676 |
0.0276 | 41.6 | 2600 | 0.3919 | 0.3044 | 0.0665 |
0.0177 | 43.2 | 2700 | 0.4104 | 0.3038 | 0.0664 |
0.0268 | 44.8 | 2800 | 0.4149 | 0.3040 | 0.0662 |
0.0388 | 46.4 | 2900 | 0.4090 | 0.3003 | 0.0656 |
0.0193 | 48.0 | 3000 | 0.4092 | 0.2994 | 0.0652 |
0.0428 | 49.6 | 3100 | 0.4087 | 0.2986 | 0.0652 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1