Badr Abdullah
Model save
75a076c verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: xls-r-300-cv17-polish-adap-ru
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: pl
          split: validation
          args: pl
        metrics:
          - name: Wer
            type: wer
            value: 0.29855366457663735

Visualize in Weights & Biases

xls-r-300-cv17-polish-adap-ru

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4087
  • Wer: 0.2986
  • Cer: 0.0652

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.2673 1.6 100 3.3121 1.0 1.0
1.2344 3.2 200 1.1417 0.8846 0.2502
0.4279 4.8 300 0.4485 0.4848 0.1082
0.2415 6.4 400 0.3752 0.3971 0.0871
0.2634 8.0 500 0.4058 0.4148 0.0927
0.1683 9.6 600 0.4079 0.3906 0.0887
0.1356 11.2 700 0.4017 0.3927 0.0872
0.0887 12.8 800 0.4094 0.3867 0.0874
0.1529 14.4 900 0.4055 0.3728 0.0843
0.1206 16.0 1000 0.4030 0.3709 0.0824
0.0573 17.6 1100 0.4370 0.3787 0.0841
0.073 19.2 1200 0.4157 0.3653 0.0819
0.0498 20.8 1300 0.4235 0.3637 0.0811
0.0987 22.4 1400 0.4153 0.3526 0.0786
0.0791 24.0 1500 0.4239 0.3557 0.0802
0.0698 25.6 1600 0.4253 0.3473 0.0779
0.0745 27.2 1700 0.4092 0.3518 0.0784
0.0689 28.8 1800 0.4326 0.3433 0.0764
0.059 30.4 1900 0.4207 0.3342 0.0738
0.0255 32.0 2000 0.4053 0.3272 0.0726
0.0403 33.6 2100 0.4267 0.3264 0.0715
0.0281 35.2 2200 0.4141 0.3250 0.0719
0.0533 36.8 2300 0.4242 0.3252 0.0718
0.0503 38.4 2400 0.4062 0.3147 0.0690
0.0292 40.0 2500 0.4109 0.3081 0.0676
0.0276 41.6 2600 0.3919 0.3044 0.0665
0.0177 43.2 2700 0.4104 0.3038 0.0664
0.0268 44.8 2800 0.4149 0.3040 0.0662
0.0388 46.4 2900 0.4090 0.3003 0.0656
0.0193 48.0 3000 0.4092 0.2994 0.0652
0.0428 49.6 3100 0.4087 0.2986 0.0652

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1