SentenceTransformer based on BAAI/bge-large-en
This is a sentence-transformers model finetuned from BAAI/bge-large-en. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("baconnier/Finance_embedding_large_en-V0.1")
sentences = [
'How many companies are listed on the NYSE?',
'What are the trading hours of the New York Stock Exchange?',
'Why do Maple Leaf coins often trade at a premium over their metal content value?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Triplet
Metric |
Value |
cosine_accuracy |
0.5006 |
dot_accuracy |
0.4977 |
manhattan_accuracy |
0.5015 |
euclidean_accuracy |
0.5003 |
max_accuracy |
0.5015 |
Triplet
Metric |
Value |
cosine_accuracy |
0.9872 |
dot_accuracy |
0.0112 |
manhattan_accuracy |
0.9869 |
euclidean_accuracy |
0.9872 |
max_accuracy |
0.9872 |
Training Details
Training Dataset
baconnier/finance2_dataset_private
Evaluation Dataset
baconnier/finance2_dataset_private
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
num_train_epochs
: 1
warmup_ratio
: 0.1
bf16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
loss |
Finance_model_Embedding_Metric_max_accuracy |
Original_Embedding_model_Metric_max_accuracy |
0 |
0 |
- |
- |
- |
0.5015 |
0.0044 |
10 |
1.0947 |
- |
- |
- |
0.0088 |
20 |
0.9611 |
- |
- |
- |
0.0133 |
30 |
0.6565 |
- |
- |
- |
0.0177 |
40 |
0.4234 |
- |
- |
- |
0.0221 |
50 |
0.1672 |
- |
- |
- |
0.0265 |
60 |
0.1305 |
- |
- |
- |
0.0309 |
70 |
0.1381 |
- |
- |
- |
0.0353 |
80 |
0.0846 |
- |
- |
- |
0.0398 |
90 |
0.1078 |
- |
- |
- |
0.0442 |
100 |
0.0867 |
- |
- |
- |
0.0486 |
110 |
0.0935 |
- |
- |
- |
0.0530 |
120 |
0.1197 |
- |
- |
- |
0.0574 |
130 |
0.0841 |
- |
- |
- |
0.0618 |
140 |
0.0792 |
- |
- |
- |
0.0663 |
150 |
0.0811 |
- |
- |
- |
0.0707 |
160 |
0.1032 |
- |
- |
- |
0.0751 |
170 |
0.1051 |
- |
- |
- |
0.0795 |
180 |
0.1091 |
- |
- |
- |
0.0839 |
190 |
0.0778 |
- |
- |
- |
0.0883 |
200 |
0.1006 |
- |
- |
- |
0.0928 |
210 |
0.0738 |
- |
- |
- |
0.0972 |
220 |
0.1105 |
- |
- |
- |
0.1003 |
227 |
- |
0.1181 |
- |
- |
0.1016 |
230 |
0.0697 |
- |
- |
- |
0.1060 |
240 |
0.064 |
- |
- |
- |
0.1104 |
250 |
0.1204 |
- |
- |
- |
0.1148 |
260 |
0.0664 |
- |
- |
- |
0.1193 |
270 |
0.0776 |
- |
- |
- |
0.1237 |
280 |
0.0574 |
- |
- |
- |
0.1281 |
290 |
0.054 |
- |
- |
- |
0.1325 |
300 |
0.0681 |
- |
- |
- |
0.1369 |
310 |
0.1315 |
- |
- |
- |
0.1413 |
320 |
0.1005 |
- |
- |
- |
0.1458 |
330 |
0.0613 |
- |
- |
- |
0.1502 |
340 |
0.0476 |
- |
- |
- |
0.1546 |
350 |
0.0735 |
- |
- |
- |
0.1590 |
360 |
0.106 |
- |
- |
- |
0.1634 |
370 |
0.1082 |
- |
- |
- |
0.1678 |
380 |
0.0437 |
- |
- |
- |
0.1723 |
390 |
0.0782 |
- |
- |
- |
0.1767 |
400 |
0.0858 |
- |
- |
- |
0.1811 |
410 |
0.0563 |
- |
- |
- |
0.1855 |
420 |
0.0798 |
- |
- |
- |
0.1899 |
430 |
0.0674 |
- |
- |
- |
0.1943 |
440 |
0.0887 |
- |
- |
- |
0.1988 |
450 |
0.1032 |
- |
- |
- |
0.2005 |
454 |
- |
0.0720 |
- |
- |
0.2032 |
460 |
0.0591 |
- |
- |
- |
0.2076 |
470 |
0.0581 |
- |
- |
- |
0.2120 |
480 |
0.1544 |
- |
- |
- |
0.2164 |
490 |
0.0169 |
- |
- |
- |
0.2208 |
500 |
0.0593 |
- |
- |
- |
0.2253 |
510 |
0.0971 |
- |
- |
- |
0.2297 |
520 |
0.0567 |
- |
- |
- |
0.2341 |
530 |
0.0501 |
- |
- |
- |
0.2385 |
540 |
0.0452 |
- |
- |
- |
0.2429 |
550 |
0.0574 |
- |
- |
- |
0.2473 |
560 |
0.0616 |
- |
- |
- |
0.2518 |
570 |
0.1414 |
- |
- |
- |
0.2562 |
580 |
0.0776 |
- |
- |
- |
0.2606 |
590 |
0.0828 |
- |
- |
- |
0.2650 |
600 |
0.1046 |
- |
- |
- |
0.2694 |
610 |
0.1248 |
- |
- |
- |
0.2739 |
620 |
0.0547 |
- |
- |
- |
0.2783 |
630 |
0.0424 |
- |
- |
- |
0.2827 |
640 |
0.1401 |
- |
- |
- |
0.2871 |
650 |
0.0746 |
- |
- |
- |
0.2915 |
660 |
0.0279 |
- |
- |
- |
0.2959 |
670 |
0.1115 |
- |
- |
- |
0.3004 |
680 |
0.0846 |
- |
- |
- |
0.3008 |
681 |
- |
0.0655 |
- |
- |
0.3048 |
690 |
0.063 |
- |
- |
- |
0.3092 |
700 |
0.0949 |
- |
- |
- |
0.3136 |
710 |
0.0482 |
- |
- |
- |
0.3180 |
720 |
0.063 |
- |
- |
- |
0.3224 |
730 |
0.0524 |
- |
- |
- |
0.3269 |
740 |
0.0752 |
- |
- |
- |
0.3313 |
750 |
0.0964 |
- |
- |
- |
0.3357 |
760 |
0.0378 |
- |
- |
- |
0.3401 |
770 |
0.0611 |
- |
- |
- |
0.3445 |
780 |
0.0764 |
- |
- |
- |
0.3489 |
790 |
0.0391 |
- |
- |
- |
0.3534 |
800 |
0.0549 |
- |
- |
- |
0.3578 |
810 |
0.0717 |
- |
- |
- |
0.3622 |
820 |
0.0688 |
- |
- |
- |
0.3666 |
830 |
0.0891 |
- |
- |
- |
0.3710 |
840 |
0.034 |
- |
- |
- |
0.3754 |
850 |
0.0773 |
- |
- |
- |
0.3799 |
860 |
0.0377 |
- |
- |
- |
0.3843 |
870 |
0.0629 |
- |
- |
- |
0.3887 |
880 |
0.0544 |
- |
- |
- |
0.3931 |
890 |
0.0384 |
- |
- |
- |
0.3975 |
900 |
0.0489 |
- |
- |
- |
0.4011 |
908 |
- |
0.0708 |
- |
- |
0.4019 |
910 |
0.0757 |
- |
- |
- |
0.4064 |
920 |
0.0904 |
- |
- |
- |
0.4108 |
930 |
0.0569 |
- |
- |
- |
0.4152 |
940 |
0.0875 |
- |
- |
- |
0.4196 |
950 |
0.0452 |
- |
- |
- |
0.4240 |
960 |
0.0791 |
- |
- |
- |
0.4284 |
970 |
0.0721 |
- |
- |
- |
0.4329 |
980 |
0.0354 |
- |
- |
- |
0.4373 |
990 |
0.0171 |
- |
- |
- |
0.4417 |
1000 |
0.0726 |
- |
- |
- |
0.4461 |
1010 |
0.0546 |
- |
- |
- |
0.4505 |
1020 |
0.0352 |
- |
- |
- |
0.4549 |
1030 |
0.0424 |
- |
- |
- |
0.4594 |
1040 |
0.063 |
- |
- |
- |
0.4638 |
1050 |
0.0928 |
- |
- |
- |
0.4682 |
1060 |
0.0648 |
- |
- |
- |
0.4726 |
1070 |
0.0591 |
- |
- |
- |
0.4770 |
1080 |
0.0506 |
- |
- |
- |
0.4814 |
1090 |
0.0991 |
- |
- |
- |
0.4859 |
1100 |
0.0268 |
- |
- |
- |
0.4903 |
1110 |
0.039 |
- |
- |
- |
0.4947 |
1120 |
0.0913 |
- |
- |
- |
0.4991 |
1130 |
0.0413 |
- |
- |
- |
0.5013 |
1135 |
- |
0.0542 |
- |
- |
0.5035 |
1140 |
0.0706 |
- |
- |
- |
0.5080 |
1150 |
0.0476 |
- |
- |
- |
0.5124 |
1160 |
0.0567 |
- |
- |
- |
0.5168 |
1170 |
0.0425 |
- |
- |
- |
0.5212 |
1180 |
0.0378 |
- |
- |
- |
0.5256 |
1190 |
0.0531 |
- |
- |
- |
0.5300 |
1200 |
0.0839 |
- |
- |
- |
0.5345 |
1210 |
0.0378 |
- |
- |
- |
0.5389 |
1220 |
0.0309 |
- |
- |
- |
0.5433 |
1230 |
0.0213 |
- |
- |
- |
0.5477 |
1240 |
0.0769 |
- |
- |
- |
0.5521 |
1250 |
0.0543 |
- |
- |
- |
0.5565 |
1260 |
0.0587 |
- |
- |
- |
0.5610 |
1270 |
0.0658 |
- |
- |
- |
0.5654 |
1280 |
0.0621 |
- |
- |
- |
0.5698 |
1290 |
0.0558 |
- |
- |
- |
0.5742 |
1300 |
0.0521 |
- |
- |
- |
0.5786 |
1310 |
0.0481 |
- |
- |
- |
0.5830 |
1320 |
0.0373 |
- |
- |
- |
0.5875 |
1330 |
0.0652 |
- |
- |
- |
0.5919 |
1340 |
0.0685 |
- |
- |
- |
0.5963 |
1350 |
0.077 |
- |
- |
- |
0.6007 |
1360 |
0.0521 |
- |
- |
- |
0.6016 |
1362 |
- |
0.0516 |
- |
- |
0.6051 |
1370 |
0.0378 |
- |
- |
- |
0.6095 |
1380 |
0.0442 |
- |
- |
- |
0.6140 |
1390 |
0.0435 |
- |
- |
- |
0.6184 |
1400 |
0.0288 |
- |
- |
- |
0.6228 |
1410 |
0.0565 |
- |
- |
- |
0.6272 |
1420 |
0.0449 |
- |
- |
- |
0.6316 |
1430 |
0.0226 |
- |
- |
- |
0.6360 |
1440 |
0.0395 |
- |
- |
- |
0.6405 |
1450 |
0.059 |
- |
- |
- |
0.6449 |
1460 |
0.1588 |
- |
- |
- |
0.6493 |
1470 |
0.0562 |
- |
- |
- |
0.6537 |
1480 |
0.117 |
- |
- |
- |
0.6581 |
1490 |
0.107 |
- |
- |
- |
0.6625 |
1500 |
0.0972 |
- |
- |
- |
0.6670 |
1510 |
0.0684 |
- |
- |
- |
0.6714 |
1520 |
0.0743 |
- |
- |
- |
0.6758 |
1530 |
0.0784 |
- |
- |
- |
0.6802 |
1540 |
0.0892 |
- |
- |
- |
0.6846 |
1550 |
0.0676 |
- |
- |
- |
0.6890 |
1560 |
0.0312 |
- |
- |
- |
0.6935 |
1570 |
0.0834 |
- |
- |
- |
0.6979 |
1580 |
0.0241 |
- |
- |
- |
0.7019 |
1589 |
- |
0.0495 |
- |
- |
0.7023 |
1590 |
0.0391 |
- |
- |
- |
0.7067 |
1600 |
0.043 |
- |
- |
- |
0.7111 |
1610 |
0.045 |
- |
- |
- |
0.7155 |
1620 |
0.0216 |
- |
- |
- |
0.7200 |
1630 |
0.0715 |
- |
- |
- |
0.7244 |
1640 |
0.0173 |
- |
- |
- |
0.7288 |
1650 |
0.0249 |
- |
- |
- |
0.7332 |
1660 |
0.0187 |
- |
- |
- |
0.7376 |
1670 |
0.0647 |
- |
- |
- |
0.7420 |
1680 |
0.0199 |
- |
- |
- |
0.7465 |
1690 |
0.0333 |
- |
- |
- |
0.7509 |
1700 |
0.0718 |
- |
- |
- |
0.7553 |
1710 |
0.0373 |
- |
- |
- |
0.7597 |
1720 |
0.0744 |
- |
- |
- |
0.7641 |
1730 |
0.0185 |
- |
- |
- |
0.7686 |
1740 |
0.0647 |
- |
- |
- |
0.7730 |
1750 |
0.0289 |
- |
- |
- |
0.7774 |
1760 |
0.034 |
- |
- |
- |
0.7818 |
1770 |
0.0184 |
- |
- |
- |
0.7862 |
1780 |
0.0537 |
- |
- |
- |
0.7906 |
1790 |
0.0724 |
- |
- |
- |
0.7951 |
1800 |
0.0511 |
- |
- |
- |
0.7995 |
1810 |
0.0165 |
- |
- |
- |
0.8021 |
1816 |
- |
0.0488 |
- |
- |
0.8039 |
1820 |
0.0364 |
- |
- |
- |
0.8083 |
1830 |
0.1126 |
- |
- |
- |
0.8127 |
1840 |
0.0148 |
- |
- |
- |
0.8171 |
1850 |
0.0722 |
- |
- |
- |
0.8216 |
1860 |
0.0586 |
- |
- |
- |
0.8260 |
1870 |
0.0496 |
- |
- |
- |
0.8304 |
1880 |
0.026 |
- |
- |
- |
0.8348 |
1890 |
0.0417 |
- |
- |
- |
0.8392 |
1900 |
0.0586 |
- |
- |
- |
0.8436 |
1910 |
0.0255 |
- |
- |
- |
0.8481 |
1920 |
0.0329 |
- |
- |
- |
0.8525 |
1930 |
0.015 |
- |
- |
- |
0.8569 |
1940 |
0.0657 |
- |
- |
- |
0.8613 |
1950 |
0.0465 |
- |
- |
- |
0.8657 |
1960 |
0.0107 |
- |
- |
- |
0.8701 |
1970 |
0.0401 |
- |
- |
- |
0.8746 |
1980 |
0.022 |
- |
- |
- |
0.8790 |
1990 |
0.061 |
- |
- |
- |
0.8834 |
2000 |
0.0474 |
- |
- |
- |
0.8878 |
2010 |
0.0358 |
- |
- |
- |
0.8922 |
2020 |
0.0599 |
- |
- |
- |
0.8966 |
2030 |
0.0522 |
- |
- |
- |
0.9011 |
2040 |
0.0312 |
- |
- |
- |
0.9024 |
2043 |
- |
0.0421 |
- |
- |
0.9055 |
2050 |
0.024 |
- |
- |
- |
0.9099 |
2060 |
0.1085 |
- |
- |
- |
0.9143 |
2070 |
0.0144 |
- |
- |
- |
0.9187 |
2080 |
0.038 |
- |
- |
- |
0.9231 |
2090 |
0.0948 |
- |
- |
- |
0.9276 |
2100 |
0.0317 |
- |
- |
- |
0.9320 |
2110 |
0.0674 |
- |
- |
- |
0.9364 |
2120 |
0.081 |
- |
- |
- |
0.9408 |
2130 |
0.036 |
- |
- |
- |
0.9452 |
2140 |
0.0649 |
- |
- |
- |
0.9496 |
2150 |
0.0235 |
- |
- |
- |
0.9541 |
2160 |
0.0291 |
- |
- |
- |
0.9585 |
2170 |
0.0293 |
- |
- |
- |
0.9629 |
2180 |
0.0703 |
- |
- |
- |
0.9673 |
2190 |
0.0148 |
- |
- |
- |
0.9717 |
2200 |
0.0397 |
- |
- |
- |
0.9761 |
2210 |
0.0552 |
- |
- |
- |
0.9806 |
2220 |
0.0097 |
- |
- |
- |
0.9850 |
2230 |
0.0723 |
- |
- |
- |
0.9894 |
2240 |
0.0379 |
- |
- |
- |
0.9938 |
2250 |
0.0289 |
- |
- |
- |
0.9982 |
2260 |
0.0267 |
- |
- |
- |
1.0 |
2264 |
- |
- |
0.9872 |
- |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}