File size: 3,614 Bytes
c05fef2
 
 
 
 
 
 
 
 
 
68415a7
c0a8fe6
 
 
 
 
c05fef2
c0a8fe6
 
c05fef2
 
c0a8fe6
 
 
 
 
c05fef2
 
 
 
 
c0a8fe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c05fef2
 
 
c0a8fe6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
- llama3
- llama38b
- 8b
- dolphin
- babydolphin
base_model: unsloth/llama-3-8b-bnb-4bit
datasets:
- cognitivecomputations/dolphin
---



![image/webp](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6305880b2a359dee8a01dccd%2FkngQqS2VkDb5q5LEovp6v.webp%3C%2Fspan%3E)

# BabyDolphin-8B-LLaMA3-Uncensored

- **Developed by:** babycommando
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit

This model, `babydolphin-8b-llama3-uncensored`, is an 8-billion parameter subset of the larger LLaMA (Large Language Model by Meta) and has been fine-tuned on the `cognitivecomputations/dolphin` dataset specifically for the FLAN1M-Alpaca-Uncensored tasks. It incorporates cutting-edge transformer architectures optimized for a balance between performance and efficiency.

## Model Description

`babydolphin-8b-llama3-uncensored` is designed to deliver powerful language understanding and generation capabilities while ensuring compliance with non-censorship standards for diverse application scenarios. This version is ideal for applications requiring high-quality text generation where content restrictions are minimal.

### Technical Details

- **Base Model**: LLaMA3
- **Parameters**: 8 billion
- **Fine-tuning Dataset**: cognitivecomputations/dolphin FLAN1M-Alpaca-Uncensored

### Quantization and Configuration

This model is available in multiple configurations to best suit different deployment needs:

- **f16**: Fastest conversion, retains 100% accuracy but is slow and memory-intensive.
- **q4_k_m**: Recommended for general use, balancing between speed and efficiency.
- **q3_k_m**: Good for environments where model size and speed are more critical than detailed accuracy.
- **q3_k_s**: Maximizes speed and minimizes model size, suitable for very resource-constrained environments.

## Intended Use

This model is intended for researchers and developers needing advanced natural language processing capabilities without censorship restrictions. It is particularly well-suited for generating text in scenarios where nuanced, unrestricted content generation is crucial.

## How to Use

For Ollama, check their docs for [running a GGUF model on Ollama](https://github.com/ollama/ollama/blob/main/docs/import.md)

Here is how to load and use the model in your projects using Hugging Face Transformers:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "babycommando/babydolphin-8b-llama3-uncensored"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

inputs = tokenizer("Hello, world!", return_tensors="pt")
outputs = model.generate(inputs["input_ids"])
print(tokenizer.decode(outputs[0]))
```

### Training Loss Over 60 Epochs
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6305880b2a359dee8a01dccd%2FRAakycn0OTxHHY26qZLX-.png%3C%2Fspan%3E)


- 

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

## Usage

Copy this markdown content into your model's page on the Hugging Face Model Hub to provide users with a clear, informative description of what your model can do and how it can be used. Adjust the `model_name` variable in the Python code snippet to reflect the actual path to your model on Hugging Face for ease of use by others.