babycommando commited on
Commit
c0a8fe6
·
verified ·
1 Parent(s): be9dcea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -1
README.md CHANGED
@@ -9,15 +9,79 @@ tags:
9
  - llama
10
  - trl
11
  - sft
 
 
 
 
 
12
  base_model: unsloth/llama-3-8b-bnb-4bit
 
 
13
  ---
14
 
15
- # Uploaded model
 
 
 
 
16
 
17
  - **Developed by:** babycommando
18
  - **License:** apache-2.0
19
  - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
22
 
23
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
9
  - llama
10
  - trl
11
  - sft
12
+ - llama3
13
+ - llama38b
14
+ - 8b
15
+ - dolphin
16
+ - babydolphin
17
  base_model: unsloth/llama-3-8b-bnb-4bit
18
+ datasets:
19
+ - cognitivecomputations/dolphin
20
  ---
21
 
22
+
23
+
24
+ ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6305880b2a359dee8a01dccd/kngQqS2VkDb5q5LEovp6v.webp)
25
+
26
+ # BabyDolphin-8B-LLaMA3-Uncensored
27
 
28
  - **Developed by:** babycommando
29
  - **License:** apache-2.0
30
  - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
31
 
32
+ This model, `babydolphin-8b-llama3-uncensored`, is an 8-billion parameter subset of the larger LLaMA (Large Language Model by Meta) and has been fine-tuned on the `cognitivecomputations/dolphin` dataset specifically for the FLAN1M-Alpaca-Uncensored tasks. It incorporates cutting-edge transformer architectures optimized for a balance between performance and efficiency.
33
+
34
+ ## Model Description
35
+
36
+ `babydolphin-8b-llama3-uncensored` is designed to deliver powerful language understanding and generation capabilities while ensuring compliance with non-censorship standards for diverse application scenarios. This version is ideal for applications requiring high-quality text generation where content restrictions are minimal.
37
+
38
+ ### Technical Details
39
+
40
+ - **Base Model**: LLaMA3
41
+ - **Parameters**: 8 billion
42
+ - **Fine-tuning Dataset**: cognitivecomputations/dolphin FLAN1M-Alpaca-Uncensored
43
+
44
+ ### Quantization and Configuration
45
+
46
+ This model is available in multiple configurations to best suit different deployment needs:
47
+
48
+ - **f16**: Fastest conversion, retains 100% accuracy but is slow and memory-intensive.
49
+ - **q4_k_m**: Recommended for general use, balancing between speed and efficiency.
50
+ - **q3_k_m**: Good for environments where model size and speed are more critical than detailed accuracy.
51
+ - **q3_k_s**: Maximizes speed and minimizes model size, suitable for very resource-constrained environments.
52
+
53
+ ## Intended Use
54
+
55
+ This model is intended for researchers and developers needing advanced natural language processing capabilities without censorship restrictions. It is particularly well-suited for generating text in scenarios where nuanced, unrestricted content generation is crucial.
56
+
57
+ ## How to Use
58
+
59
+ For Ollama, check their docs for [running a GGUF model on Ollama](https://github.com/ollama/ollama/blob/main/docs/import.md)
60
+
61
+ Here is how to load and use the model in your projects using Hugging Face Transformers:
62
+
63
+ ```python
64
+ from transformers import AutoModelForCausalLM, AutoTokenizer
65
+
66
+ model_name = "babycommando/babydolphin-8b-llama3-uncensored"
67
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
68
+ model = AutoModelForCausalLM.from_pretrained(model_name)
69
+
70
+ inputs = tokenizer("Hello, world!", return_tensors="pt")
71
+ outputs = model.generate(inputs["input_ids"])
72
+ print(tokenizer.decode(outputs[0]))
73
+ ```
74
+
75
+ ### Training Loss Over 60 Epochs
76
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6305880b2a359dee8a01dccd/RAakycn0OTxHHY26qZLX-.png)
77
+
78
+
79
+ -
80
+
81
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
82
 
83
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
84
+
85
+ ## Usage
86
+
87
+ Copy this markdown content into your model's page on the Hugging Face Model Hub to provide users with a clear, informative description of what your model can do and how it can be used. Adjust the `model_name` variable in the Python code snippet to reflect the actual path to your model on Hugging Face for ease of use by others.