rtdetr
This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 10.4377
- Map: 0.2587
- Map 50: 0.4214
- Map 75: 0.2668
- Map Small: 0.0132
- Map Medium: 0.0707
- Map Large: 0.3083
- Mar 1: 0.2412
- Mar 10: 0.4736
- Mar 100: 0.4998
- Mar Small: 0.0211
- Mar Medium: 0.1684
- Mar Large: 0.5787
- Map Person: 0.6872
- Mar 100 Person: 0.7948
- Map Ear: 0.3267
- Mar 100 Ear: 0.4363
- Map Earmuffs: 0.1061
- Mar 100 Earmuffs: 0.3967
- Map Face: 0.5362
- Mar 100 Face: 0.6549
- Map Face-guard: 0.0236
- Mar 100 Face-guard: 0.51
- Map Face-mask-medical: 0.1466
- Mar 100 Face-mask-medical: 0.3479
- Map Foot: 0.1167
- Mar 100 Foot: 0.3963
- Map Tools: 0.125
- Mar 100 Tools: 0.3664
- Map Glasses: 0.2452
- Mar 100 Glasses: 0.4355
- Map Gloves: 0.3086
- Mar 100 Gloves: 0.4919
- Map Helmet: 0.2733
- Mar 100 Helmet: 0.4595
- Map Hands: 0.4959
- Mar 100 Hands: 0.6459
- Map Head: 0.6255
- Mar 100 Head: 0.7222
- Map Medical-suit: 0.0071
- Mar 100 Medical-suit: 0.6667
- Map Shoes: 0.2826
- Mar 100 Shoes: 0.4203
- Map Safety-suit: 0.0628
- Mar 100 Safety-suit: 0.6043
- Map Safety-vest: 0.0284
- Mar 100 Safety-vest: 0.1479
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Person | Mar 100 Person | Map Ear | Mar 100 Ear | Map Earmuffs | Mar 100 Earmuffs | Map Face | Mar 100 Face | Map Face-guard | Mar 100 Face-guard | Map Face-mask-medical | Mar 100 Face-mask-medical | Map Foot | Mar 100 Foot | Map Tools | Mar 100 Tools | Map Glasses | Mar 100 Glasses | Map Gloves | Mar 100 Gloves | Map Helmet | Mar 100 Helmet | Map Hands | Mar 100 Hands | Map Head | Mar 100 Head | Map Medical-suit | Mar 100 Medical-suit | Map Shoes | Mar 100 Shoes | Map Safety-suit | Mar 100 Safety-suit | Map Safety-vest | Mar 100 Safety-vest |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 230 | 11.8687 | 0.1809 | 0.2959 | 0.1854 | 0.0001 | 0.0405 | 0.2126 | 0.1745 | 0.3538 | 0.3831 | 0.0003 | 0.1392 | 0.4463 | 0.6713 | 0.7877 | 0.2916 | 0.3832 | 0.0012 | 0.27 | 0.4942 | 0.6099 | 0.0003 | 0.11 | 0.0051 | 0.2792 | 0.0203 | 0.2963 | 0.0294 | 0.2341 | 0.1226 | 0.3419 | 0.1196 | 0.4622 | 0.0861 | 0.3709 | 0.4235 | 0.6114 | 0.5619 | 0.6973 | 0.0033 | 0.3333 | 0.2386 | 0.4097 | 0.0057 | 0.3043 | 0.0 | 0.0106 |
No log | 2.0 | 460 | 11.2318 | 0.2049 | 0.3336 | 0.2104 | 0.0001 | 0.0546 | 0.2415 | 0.2033 | 0.4067 | 0.4298 | 0.0009 | 0.1818 | 0.4943 | 0.6806 | 0.7963 | 0.299 | 0.4008 | 0.0019 | 0.2967 | 0.5212 | 0.6258 | 0.0013 | 0.3 | 0.0672 | 0.3167 | 0.0227 | 0.3556 | 0.0463 | 0.2657 | 0.1828 | 0.3808 | 0.2148 | 0.4744 | 0.1592 | 0.4101 | 0.4415 | 0.6258 | 0.5971 | 0.708 | 0.0043 | 0.45 | 0.2338 | 0.4048 | 0.0095 | 0.4696 | 0.0001 | 0.0255 |
21.6045 | 3.0 | 690 | 10.5848 | 0.228 | 0.3728 | 0.2323 | 0.0023 | 0.0556 | 0.2715 | 0.229 | 0.4415 | 0.472 | 0.0054 | 0.1589 | 0.5472 | 0.6736 | 0.7933 | 0.3235 | 0.4293 | 0.015 | 0.3133 | 0.5366 | 0.6397 | 0.0043 | 0.46 | 0.1355 | 0.3646 | 0.0585 | 0.3759 | 0.0672 | 0.3417 | 0.213 | 0.425 | 0.2673 | 0.4793 | 0.2207 | 0.4772 | 0.4553 | 0.6371 | 0.6186 | 0.7185 | 0.0054 | 0.575 | 0.2525 | 0.4074 | 0.0273 | 0.4957 | 0.0018 | 0.0904 |
21.6045 | 4.0 | 920 | 10.5421 | 0.2332 | 0.3782 | 0.2411 | 0.0009 | 0.0614 | 0.2771 | 0.223 | 0.4435 | 0.4738 | 0.0048 | 0.1859 | 0.5433 | 0.6844 | 0.797 | 0.3263 | 0.4265 | 0.0182 | 0.3733 | 0.5415 | 0.651 | 0.0071 | 0.35 | 0.1292 | 0.3625 | 0.0606 | 0.3815 | 0.0843 | 0.3587 | 0.213 | 0.4349 | 0.2804 | 0.4659 | 0.2003 | 0.4418 | 0.4684 | 0.6475 | 0.6229 | 0.7196 | 0.0096 | 0.6083 | 0.2897 | 0.4371 | 0.0254 | 0.5217 | 0.0029 | 0.0777 |
16.2105 | 5.0 | 1150 | 10.5670 | 0.2425 | 0.4026 | 0.2462 | 0.0026 | 0.0678 | 0.2876 | 0.2248 | 0.4572 | 0.49 | 0.0084 | 0.175 | 0.5649 | 0.6759 | 0.7959 | 0.3303 | 0.4287 | 0.051 | 0.37 | 0.5377 | 0.6458 | 0.0389 | 0.54 | 0.1382 | 0.3313 | 0.0542 | 0.3833 | 0.0967 | 0.339 | 0.2201 | 0.4081 | 0.2746 | 0.4821 | 0.2307 | 0.4747 | 0.4704 | 0.6355 | 0.6247 | 0.727 | 0.0079 | 0.6833 | 0.2719 | 0.4297 | 0.0787 | 0.5174 | 0.0212 | 0.1372 |
16.2105 | 6.0 | 1380 | 10.5205 | 0.2454 | 0.4021 | 0.2486 | 0.004 | 0.0642 | 0.2915 | 0.2318 | 0.466 | 0.4921 | 0.009 | 0.2002 | 0.565 | 0.6883 | 0.7967 | 0.3229 | 0.4303 | 0.0432 | 0.4167 | 0.533 | 0.6475 | 0.0206 | 0.49 | 0.134 | 0.3417 | 0.0763 | 0.3759 | 0.1108 | 0.3549 | 0.2424 | 0.4302 | 0.2975 | 0.4923 | 0.2172 | 0.4481 | 0.4765 | 0.6418 | 0.622 | 0.7188 | 0.0088 | 0.675 | 0.2824 | 0.4318 | 0.08 | 0.5478 | 0.0164 | 0.1255 |
14.9514 | 7.0 | 1610 | 10.4281 | 0.2503 | 0.4074 | 0.2573 | 0.0122 | 0.071 | 0.2971 | 0.2336 | 0.4732 | 0.5003 | 0.0192 | 0.1699 | 0.5787 | 0.6909 | 0.797 | 0.3294 | 0.4358 | 0.0799 | 0.3767 | 0.5398 | 0.6511 | 0.0195 | 0.55 | 0.1253 | 0.3229 | 0.0995 | 0.4037 | 0.1184 | 0.3798 | 0.2401 | 0.4262 | 0.3016 | 0.4878 | 0.2372 | 0.4582 | 0.4943 | 0.6485 | 0.6247 | 0.7213 | 0.0081 | 0.6583 | 0.2781 | 0.4214 | 0.0502 | 0.6087 | 0.019 | 0.1574 |
14.9514 | 8.0 | 1840 | 10.4168 | 0.2591 | 0.4207 | 0.2665 | 0.0129 | 0.069 | 0.3082 | 0.2426 | 0.471 | 0.5001 | 0.0198 | 0.1687 | 0.5777 | 0.6901 | 0.7971 | 0.3275 | 0.4379 | 0.0953 | 0.3833 | 0.539 | 0.6537 | 0.0503 | 0.54 | 0.1408 | 0.3333 | 0.1041 | 0.387 | 0.1254 | 0.3735 | 0.2417 | 0.4314 | 0.3014 | 0.4854 | 0.2689 | 0.4557 | 0.4984 | 0.6511 | 0.6291 | 0.725 | 0.0068 | 0.6667 | 0.2833 | 0.4224 | 0.0785 | 0.6217 | 0.0245 | 0.1372 |
14.5079 | 9.0 | 2070 | 10.4207 | 0.2605 | 0.4265 | 0.2676 | 0.013 | 0.072 | 0.3104 | 0.2384 | 0.4779 | 0.5015 | 0.0212 | 0.1712 | 0.5805 | 0.6874 | 0.7957 | 0.3287 | 0.439 | 0.109 | 0.3967 | 0.5364 | 0.6546 | 0.0376 | 0.52 | 0.1454 | 0.3333 | 0.11 | 0.4019 | 0.1238 | 0.3652 | 0.2454 | 0.439 | 0.309 | 0.4882 | 0.2851 | 0.4646 | 0.4972 | 0.6475 | 0.6276 | 0.7259 | 0.0068 | 0.6667 | 0.2853 | 0.4249 | 0.0651 | 0.6043 | 0.0291 | 0.1585 |
14.5079 | 10.0 | 2300 | 10.4377 | 0.2587 | 0.4214 | 0.2668 | 0.0132 | 0.0707 | 0.3083 | 0.2412 | 0.4736 | 0.4998 | 0.0211 | 0.1684 | 0.5787 | 0.6872 | 0.7948 | 0.3267 | 0.4363 | 0.1061 | 0.3967 | 0.5362 | 0.6549 | 0.0236 | 0.51 | 0.1466 | 0.3479 | 0.1167 | 0.3963 | 0.125 | 0.3664 | 0.2452 | 0.4355 | 0.3086 | 0.4919 | 0.2733 | 0.4595 | 0.4959 | 0.6459 | 0.6255 | 0.7222 | 0.0071 | 0.6667 | 0.2826 | 0.4203 | 0.0628 | 0.6043 | 0.0284 | 0.1479 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for b09501048/rtdetr
Base model
PekingU/rtdetr_r50vd_coco_o365