Visualize in Weights & Biases

rtdetr

This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 10.4377
  • Map: 0.2587
  • Map 50: 0.4214
  • Map 75: 0.2668
  • Map Small: 0.0132
  • Map Medium: 0.0707
  • Map Large: 0.3083
  • Mar 1: 0.2412
  • Mar 10: 0.4736
  • Mar 100: 0.4998
  • Mar Small: 0.0211
  • Mar Medium: 0.1684
  • Mar Large: 0.5787
  • Map Person: 0.6872
  • Mar 100 Person: 0.7948
  • Map Ear: 0.3267
  • Mar 100 Ear: 0.4363
  • Map Earmuffs: 0.1061
  • Mar 100 Earmuffs: 0.3967
  • Map Face: 0.5362
  • Mar 100 Face: 0.6549
  • Map Face-guard: 0.0236
  • Mar 100 Face-guard: 0.51
  • Map Face-mask-medical: 0.1466
  • Mar 100 Face-mask-medical: 0.3479
  • Map Foot: 0.1167
  • Mar 100 Foot: 0.3963
  • Map Tools: 0.125
  • Mar 100 Tools: 0.3664
  • Map Glasses: 0.2452
  • Mar 100 Glasses: 0.4355
  • Map Gloves: 0.3086
  • Mar 100 Gloves: 0.4919
  • Map Helmet: 0.2733
  • Mar 100 Helmet: 0.4595
  • Map Hands: 0.4959
  • Mar 100 Hands: 0.6459
  • Map Head: 0.6255
  • Mar 100 Head: 0.7222
  • Map Medical-suit: 0.0071
  • Mar 100 Medical-suit: 0.6667
  • Map Shoes: 0.2826
  • Mar 100 Shoes: 0.4203
  • Map Safety-suit: 0.0628
  • Mar 100 Safety-suit: 0.6043
  • Map Safety-vest: 0.0284
  • Mar 100 Safety-vest: 0.1479

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Person Mar 100 Person Map Ear Mar 100 Ear Map Earmuffs Mar 100 Earmuffs Map Face Mar 100 Face Map Face-guard Mar 100 Face-guard Map Face-mask-medical Mar 100 Face-mask-medical Map Foot Mar 100 Foot Map Tools Mar 100 Tools Map Glasses Mar 100 Glasses Map Gloves Mar 100 Gloves Map Helmet Mar 100 Helmet Map Hands Mar 100 Hands Map Head Mar 100 Head Map Medical-suit Mar 100 Medical-suit Map Shoes Mar 100 Shoes Map Safety-suit Mar 100 Safety-suit Map Safety-vest Mar 100 Safety-vest
No log 1.0 230 11.8687 0.1809 0.2959 0.1854 0.0001 0.0405 0.2126 0.1745 0.3538 0.3831 0.0003 0.1392 0.4463 0.6713 0.7877 0.2916 0.3832 0.0012 0.27 0.4942 0.6099 0.0003 0.11 0.0051 0.2792 0.0203 0.2963 0.0294 0.2341 0.1226 0.3419 0.1196 0.4622 0.0861 0.3709 0.4235 0.6114 0.5619 0.6973 0.0033 0.3333 0.2386 0.4097 0.0057 0.3043 0.0 0.0106
No log 2.0 460 11.2318 0.2049 0.3336 0.2104 0.0001 0.0546 0.2415 0.2033 0.4067 0.4298 0.0009 0.1818 0.4943 0.6806 0.7963 0.299 0.4008 0.0019 0.2967 0.5212 0.6258 0.0013 0.3 0.0672 0.3167 0.0227 0.3556 0.0463 0.2657 0.1828 0.3808 0.2148 0.4744 0.1592 0.4101 0.4415 0.6258 0.5971 0.708 0.0043 0.45 0.2338 0.4048 0.0095 0.4696 0.0001 0.0255
21.6045 3.0 690 10.5848 0.228 0.3728 0.2323 0.0023 0.0556 0.2715 0.229 0.4415 0.472 0.0054 0.1589 0.5472 0.6736 0.7933 0.3235 0.4293 0.015 0.3133 0.5366 0.6397 0.0043 0.46 0.1355 0.3646 0.0585 0.3759 0.0672 0.3417 0.213 0.425 0.2673 0.4793 0.2207 0.4772 0.4553 0.6371 0.6186 0.7185 0.0054 0.575 0.2525 0.4074 0.0273 0.4957 0.0018 0.0904
21.6045 4.0 920 10.5421 0.2332 0.3782 0.2411 0.0009 0.0614 0.2771 0.223 0.4435 0.4738 0.0048 0.1859 0.5433 0.6844 0.797 0.3263 0.4265 0.0182 0.3733 0.5415 0.651 0.0071 0.35 0.1292 0.3625 0.0606 0.3815 0.0843 0.3587 0.213 0.4349 0.2804 0.4659 0.2003 0.4418 0.4684 0.6475 0.6229 0.7196 0.0096 0.6083 0.2897 0.4371 0.0254 0.5217 0.0029 0.0777
16.2105 5.0 1150 10.5670 0.2425 0.4026 0.2462 0.0026 0.0678 0.2876 0.2248 0.4572 0.49 0.0084 0.175 0.5649 0.6759 0.7959 0.3303 0.4287 0.051 0.37 0.5377 0.6458 0.0389 0.54 0.1382 0.3313 0.0542 0.3833 0.0967 0.339 0.2201 0.4081 0.2746 0.4821 0.2307 0.4747 0.4704 0.6355 0.6247 0.727 0.0079 0.6833 0.2719 0.4297 0.0787 0.5174 0.0212 0.1372
16.2105 6.0 1380 10.5205 0.2454 0.4021 0.2486 0.004 0.0642 0.2915 0.2318 0.466 0.4921 0.009 0.2002 0.565 0.6883 0.7967 0.3229 0.4303 0.0432 0.4167 0.533 0.6475 0.0206 0.49 0.134 0.3417 0.0763 0.3759 0.1108 0.3549 0.2424 0.4302 0.2975 0.4923 0.2172 0.4481 0.4765 0.6418 0.622 0.7188 0.0088 0.675 0.2824 0.4318 0.08 0.5478 0.0164 0.1255
14.9514 7.0 1610 10.4281 0.2503 0.4074 0.2573 0.0122 0.071 0.2971 0.2336 0.4732 0.5003 0.0192 0.1699 0.5787 0.6909 0.797 0.3294 0.4358 0.0799 0.3767 0.5398 0.6511 0.0195 0.55 0.1253 0.3229 0.0995 0.4037 0.1184 0.3798 0.2401 0.4262 0.3016 0.4878 0.2372 0.4582 0.4943 0.6485 0.6247 0.7213 0.0081 0.6583 0.2781 0.4214 0.0502 0.6087 0.019 0.1574
14.9514 8.0 1840 10.4168 0.2591 0.4207 0.2665 0.0129 0.069 0.3082 0.2426 0.471 0.5001 0.0198 0.1687 0.5777 0.6901 0.7971 0.3275 0.4379 0.0953 0.3833 0.539 0.6537 0.0503 0.54 0.1408 0.3333 0.1041 0.387 0.1254 0.3735 0.2417 0.4314 0.3014 0.4854 0.2689 0.4557 0.4984 0.6511 0.6291 0.725 0.0068 0.6667 0.2833 0.4224 0.0785 0.6217 0.0245 0.1372
14.5079 9.0 2070 10.4207 0.2605 0.4265 0.2676 0.013 0.072 0.3104 0.2384 0.4779 0.5015 0.0212 0.1712 0.5805 0.6874 0.7957 0.3287 0.439 0.109 0.3967 0.5364 0.6546 0.0376 0.52 0.1454 0.3333 0.11 0.4019 0.1238 0.3652 0.2454 0.439 0.309 0.4882 0.2851 0.4646 0.4972 0.6475 0.6276 0.7259 0.0068 0.6667 0.2853 0.4249 0.0651 0.6043 0.0291 0.1585
14.5079 10.0 2300 10.4377 0.2587 0.4214 0.2668 0.0132 0.0707 0.3083 0.2412 0.4736 0.4998 0.0211 0.1684 0.5787 0.6872 0.7948 0.3267 0.4363 0.1061 0.3967 0.5362 0.6549 0.0236 0.51 0.1466 0.3479 0.1167 0.3963 0.125 0.3664 0.2452 0.4355 0.3086 0.4919 0.2733 0.4595 0.4959 0.6459 0.6255 0.7222 0.0071 0.6667 0.2826 0.4203 0.0628 0.6043 0.0284 0.1479

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
42.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for b09501048/rtdetr

Finetuned
(13)
this model