metadata
license: mit
base_model: Davlan/afro-xlmr-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: angela_shuffle_diacritics_eval
results: []
angela_shuffle_diacritics_eval
This model is a fine-tuned version of Davlan/afro-xlmr-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4071
- Precision: 0.3821
- Recall: 0.1977
- F1: 0.2605
- Accuracy: 0.8880
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1717 | 1.0 | 1283 | 0.3130 | 0.3908 | 0.1556 | 0.2225 | 0.8890 |
0.1431 | 2.0 | 2566 | 0.3030 | 0.4069 | 0.1925 | 0.2614 | 0.8894 |
0.1257 | 3.0 | 3849 | 0.3526 | 0.3966 | 0.1660 | 0.2340 | 0.8896 |
0.1066 | 4.0 | 5132 | 0.3600 | 0.3816 | 0.2235 | 0.2819 | 0.8869 |
0.0881 | 5.0 | 6415 | 0.4071 | 0.3821 | 0.1977 | 0.2605 | 0.8880 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3