indobert-base-uncased-finetuned-indonlu-smsa

This model is a fine-tuned version of indolem/indobert-base-uncased on the indonlu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2277
  • Accuracy: 0.9302
  • F1: 0.9066
  • Precision: 0.8992
  • Recall: 0.9147

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 344 0.3831 0.8476 0.7715 0.7817 0.7627
0.4167 2.0 688 0.2809 0.8905 0.8406 0.8699 0.8185
0.2624 3.0 1032 0.2254 0.9230 0.8842 0.9004 0.8714
0.2624 4.0 1376 0.2378 0.9238 0.8797 0.9180 0.8594
0.1865 5.0 1720 0.2277 0.9302 0.9066 0.8992 0.9147
0.1217 6.0 2064 0.2444 0.9262 0.8981 0.9013 0.8957
0.1217 7.0 2408 0.2985 0.9286 0.8999 0.9035 0.8971
0.0847 8.0 2752 0.3397 0.9278 0.8969 0.9090 0.8871
0.0551 9.0 3096 0.3542 0.9270 0.8961 0.9010 0.8924
0.0551 10.0 3440 0.3862 0.9222 0.8895 0.8970 0.8846

Framework versions

  • Transformers 4.14.1
  • Pytorch 1.10.0+cu111
  • Datasets 1.17.0
  • Tokenizers 0.10.3
Downloads last month
70
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ayameRushia/indobert-base-uncased-finetuned-indonlu-smsa

Finetunes
2 models

Dataset used to train ayameRushia/indobert-base-uncased-finetuned-indonlu-smsa

Evaluation results