Test Result
Model | WER | CER |
---|---|---|
flozi00/wav2vec2-large-xlsr-53-german-with-lm | 5.7467896819046755% | 1.8980142607670552% |
Evaluation
The model can be evaluated as follows on the German test data of Common Voice.
import torchaudio.functional as F
import torch
from transformers import AutoModelForCTC, AutoProcessor
import re
from datasets import load_dataset, load_metric
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
counter = 0
wer_counter = 0
cer_counter = 0
def main():
model = AutoModelForCTC.from_pretrained("flozi00/wav2vec2-large-xlsr-53-german-with-lm")
processor = AutoProcessor.from_pretrained("flozi00/wav2vec2-large-xlsr-53-german-with-lm")
wer = load_metric("wer")
cer = load_metric("cer")
ds = load_dataset("common_voice", "de", split="test")
#ds = ds.select(range(100))
def calculate_metrics(batch):
global counter, wer_counter, cer_counter
resampled_audio = F.resample(torch.tensor(batch["audio"]["array"]), 48_000, 16_000).numpy()
input_values = processor(resampled_audio, return_tensors="pt", sampling_rate=16_000).input_values
with torch.no_grad():
logits = model(input_values).logits.numpy()[0]
decoded = processor.decode(logits)
pred = decoded.text
ref = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
wer_result = wer.compute(predictions=[pred], references=[ref])
cer_result = cer.compute(predictions=[pred], references=[ref])
counter += 1
wer_counter += wer_result
cer_counter += cer_result
print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}")
return batch
ds.map(calculate_metrics, remove_columns=ds.column_names)
main()
Credits:
The Acoustic model is an copy of jonatasgrosman's model I used to train an matching kenlm language model for
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train aware-ai/wav2vec2-large-xlsr-53-german-with-lm
Space using aware-ai/wav2vec2-large-xlsr-53-german-with-lm 1
Evaluation results
- Test WER on Common Voice deself-reported5.747
- Test CER on Common Voice deself-reported1.898