avsolatorio's picture
avsolatorio/doc-topic-model_eval-04_train-02
7485b59 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: doc-topic-model_eval-04_train-02
    results: []

doc-topic-model_eval-04_train-02

This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0374
  • Accuracy: 0.9879
  • F1: 0.6272
  • Precision: 0.7299
  • Recall: 0.5498

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0944 0.4931 1000 0.0895 0.9815 0.0 0.0 0.0
0.0769 0.9862 2000 0.0685 0.9815 0.0014 1.0 0.0007
0.0607 1.4793 3000 0.0560 0.9823 0.1066 0.8022 0.0571
0.0535 1.9724 4000 0.0501 0.9846 0.3748 0.7494 0.2498
0.0466 2.4655 5000 0.0450 0.9858 0.4899 0.7338 0.3677
0.0441 2.9586 6000 0.0421 0.9863 0.5084 0.7553 0.3832
0.0391 3.4517 7000 0.0404 0.9868 0.5581 0.7311 0.4513
0.0372 3.9448 8000 0.0393 0.9870 0.5568 0.7564 0.4405
0.0336 4.4379 9000 0.0382 0.9872 0.5749 0.7485 0.4666
0.0337 4.9310 10000 0.0375 0.9874 0.5938 0.7375 0.4970
0.0297 5.4241 11000 0.0368 0.9875 0.6079 0.7260 0.5228
0.0296 5.9172 12000 0.0376 0.9875 0.5899 0.7526 0.4850
0.0263 6.4103 13000 0.0372 0.9877 0.6211 0.7210 0.5455
0.0272 6.9034 14000 0.0376 0.9875 0.6194 0.7061 0.5516
0.0234 7.3964 15000 0.0373 0.9878 0.6222 0.7304 0.5420
0.0243 7.8895 16000 0.0374 0.9879 0.6272 0.7299 0.5498

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1