Tabular Regression
Safetensors
xiyuanz's picture
Update README.md
199e597 verified
---
license: apache-2.0
pipeline_tag: tabular-regression
---
# TabPFNMix Regressor
TabPFNMix regressor is a tabular foundation model that is pre-trained on purely synthetic datasets sampled from a mix of random regressors.
## Architecture
TabPFNMix is based on a 12-layer encoder-decoder Transformer of 37 M parameters. We use a pre-training strategy incorporating in-context learning, similar to that used by TabPFN and TabForestPFN.
## Usage
To use TabPFNMix regressor, install AutoGluon by running:
```sh
pip install autogluon
```
A minimal example showing how to perform fine-tuning and inference using TabPFNMix regressor
```python
import pandas as pd
from autogluon.tabular import TabularPredictor
if __name__ == '__main__':
train_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
subsample_size = 5000
if subsample_size is not None and subsample_size < len(train_data):
train_data = train_data.sample(n=subsample_size, random_state=0)
test_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
tabpfnmix_default = {
"model_path_classifier": "autogluon/tabpfn-mix-1.0-classifier",
"model_path_regressor": "autogluon/tabpfn-mix-1.0-regressor",
"n_ensembles": 1,
"max_epochs": 30,
}
hyperparameters = {
"TABPFNMIX": [
tabpfnmix_default,
],
}
label = "age"
problem_type = "regression"
predictor = TabularPredictor(
label=label,
problem_type=problem_type,
)
predictor = predictor.fit(
train_data=train_data,
hyperparameters=hyperparameters,
verbosity=3,
)
predictor.leaderboard(test_data, display=True)
```
## Citation
If you find TabPFNMix useful for your research, please consider citing the associated papers:
```
@article{erickson2020autogluon,
title={Autogluon-tabular: Robust and accurate automl for structured data},
author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2003.06505},
year={2020}
}
@article{hollmann2022tabpfn,
title={Tabpfn: A transformer that solves small tabular classification problems in a second},
author={Hollmann, Noah and M{\"u}ller, Samuel and Eggensperger, Katharina and Hutter, Frank},
journal={arXiv preprint arXiv:2207.01848},
year={2022}
}
@article{breejen2024context,
title={Why In-Context Learning Transformers are Tabular Data Classifiers},
author={Breejen, Felix den and Bae, Sangmin and Cha, Stephen and Yun, Se-Young},
journal={arXiv preprint arXiv:2405.13396},
year={2024}
}
```
## License
This project is licensed under the Apache-2.0 License.