whisper-kaggle-be3 / README.md
astrung's picture
End of training
3591ecd
metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-kaggle-be3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 45.60938682816049

whisper-kaggle-be3

This model is a fine-tuned version of openai/whisper-small on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3213
  • Wer: 45.6094

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0749 3.15 1000 0.1886 50.9273
0.0117 6.31 2000 0.2440 47.2937
0.0014 9.46 3000 0.2978 45.8933
0.0003 12.62 4000 0.3213 45.6094

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.14.4.dev0
  • Tokenizers 0.13.3