Shona
Collection
Experimental automatic speech recognition models developed for the Shona language
•
36 items
•
Updated
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
9.1544 | 0.9132 | 200 | 3.6919 | 1.0 | 1.0 |
3.1318 | 1.8265 | 400 | 2.9289 | 1.0 | 1.0 |
2.5747 | 2.7397 | 600 | 2.6079 | 1.0 | 0.9108 |
0.6358 | 3.6530 | 800 | 3.0760 | 1.0 | 0.9662 |
0.3581 | 4.5662 | 1000 | 1.7062 | 0.9991 | 0.6222 |
0.278 | 5.4795 | 1200 | 2.2421 | 0.9999 | 0.7555 |
0.2371 | 6.3927 | 1400 | 1.1771 | 0.9832 | 0.4230 |
0.209 | 7.3059 | 1600 | 1.7248 | 0.9987 | 0.6265 |
0.175 | 8.2192 | 1800 | 1.1461 | 0.9769 | 0.3771 |
0.1629 | 9.1324 | 2000 | 0.9195 | 0.9554 | 0.3226 |
0.1438 | 10.0457 | 2200 | 1.1127 | 0.9837 | 0.3919 |
0.1241 | 10.9589 | 2400 | 0.8292 | 0.9306 | 0.2766 |
0.1138 | 11.8721 | 2600 | 0.7719 | 0.8899 | 0.2485 |
0.0988 | 12.7854 | 2800 | 0.6755 | 0.8452 | 0.2052 |
0.0886 | 13.6986 | 3000 | 0.6168 | 0.8024 | 0.1815 |
0.0818 | 14.6119 | 3200 | 0.6716 | 0.8237 | 0.2015 |
0.0759 | 15.5251 | 3400 | 0.5018 | 0.7002 | 0.1375 |
0.0647 | 16.4384 | 3600 | 0.5972 | 0.7773 | 0.1681 |
0.062 | 17.3516 | 3800 | 0.5742 | 0.7406 | 0.1566 |
0.057 | 18.2648 | 4000 | 0.5820 | 0.7318 | 0.1630 |
0.0505 | 19.1781 | 4200 | 0.4585 | 0.5858 | 0.1123 |
0.0502 | 20.0913 | 4400 | 0.4341 | 0.5562 | 0.1008 |
0.0432 | 21.0046 | 4600 | 0.4241 | 0.5169 | 0.0967 |
0.0412 | 21.9178 | 4800 | 0.4216 | 0.5103 | 0.0923 |
0.0403 | 22.8311 | 5000 | 0.4430 | 0.5358 | 0.0970 |
0.0383 | 23.7443 | 5200 | 0.4680 | 0.5673 | 0.1046 |
0.0364 | 24.6575 | 5400 | 0.4472 | 0.5212 | 0.0981 |
0.0359 | 25.5708 | 5600 | 0.4221 | 0.5049 | 0.0886 |
0.0333 | 26.4840 | 5800 | 0.4129 | 0.4750 | 0.0835 |
0.0324 | 27.3973 | 6000 | 0.4257 | 0.4626 | 0.0834 |
0.0325 | 28.3105 | 6200 | 0.4004 | 0.4302 | 0.0754 |
0.0303 | 29.2237 | 6400 | 0.4347 | 0.5023 | 0.0864 |
0.0289 | 30.1370 | 6600 | 0.4113 | 0.4563 | 0.0824 |
0.029 | 31.0502 | 6800 | 0.4012 | 0.4568 | 0.0803 |
0.028 | 31.9635 | 7000 | 0.4144 | 0.4533 | 0.0826 |
0.0277 | 32.8767 | 7200 | 0.4071 | 0.4092 | 0.0722 |
0.0259 | 33.7900 | 7400 | 0.4101 | 0.4172 | 0.0731 |
0.0266 | 34.7032 | 7600 | 0.4150 | 0.4117 | 0.0730 |
0.0251 | 35.6164 | 7800 | 0.4122 | 0.4316 | 0.0769 |
0.0242 | 36.5297 | 8000 | 0.4113 | 0.4175 | 0.0747 |
0.0235 | 37.4429 | 8200 | 0.4046 | 0.4034 | 0.0711 |
0.0234 | 38.3562 | 8400 | 0.4193 | 0.4032 | 0.0699 |
0.0225 | 39.2694 | 8600 | 0.3984 | 0.3859 | 0.0671 |
0.0228 | 40.1826 | 8800 | 0.4267 | 0.3774 | 0.0657 |
0.0214 | 41.0959 | 9000 | 0.4046 | 0.3840 | 0.0664 |
0.0203 | 42.0091 | 9200 | 0.4198 | 0.3849 | 0.0670 |
0.0209 | 42.9224 | 9400 | 0.4260 | 0.3637 | 0.0620 |
0.0209 | 43.8356 | 9600 | 0.4096 | 0.3753 | 0.0661 |
0.0207 | 44.7489 | 9800 | 0.4170 | 0.3930 | 0.0671 |
0.0198 | 45.6621 | 10000 | 0.4158 | 0.4124 | 0.0691 |
0.0192 | 46.5753 | 10200 | 0.4133 | 0.3594 | 0.0625 |
0.0188 | 47.4886 | 10400 | 0.4111 | 0.3790 | 0.0653 |
0.0179 | 48.4018 | 10600 | 0.4144 | 0.3817 | 0.0657 |
0.018 | 49.3151 | 10800 | 0.4229 | 0.3782 | 0.0656 |
0.0172 | 50.2283 | 11000 | 0.4300 | 0.3807 | 0.0654 |
0.0181 | 51.1416 | 11200 | 0.4177 | 0.3601 | 0.0617 |
0.0171 | 52.0548 | 11400 | 0.4198 | 0.3841 | 0.0654 |
0.0176 | 52.9680 | 11600 | 0.4308 | 0.3675 | 0.0624 |
0.0163 | 53.8813 | 11800 | 0.4330 | 0.3647 | 0.0624 |
0.0164 | 54.7945 | 12000 | 0.4332 | 0.3832 | 0.0666 |
0.015 | 55.7078 | 12200 | 0.4433 | 0.3626 | 0.0628 |
Base model
facebook/wav2vec2-xls-r-300m