w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-109hrs-v4

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7091
  • Wer: 0.1781
  • Cer: 0.0585

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.9031 1.0 2880 0.3538 0.2711 0.0833
0.5044 2.0 5760 0.3253 0.2325 0.0732
0.4598 3.0 8640 0.3055 0.2258 0.0700
0.4309 4.0 11520 0.2902 0.2164 0.0666
0.4074 5.0 14400 0.2737 0.2065 0.0669
0.3799 6.0 17280 0.2915 0.2066 0.0692
0.3535 7.0 20160 0.2991 0.1983 0.0649
0.3266 8.0 23040 0.3086 0.1991 0.0638
0.3023 9.0 25920 0.3162 0.2263 0.0956
0.2805 10.0 28800 0.3065 0.1972 0.0706
0.262 11.0 31680 0.3115 0.1853 0.0597
0.2449 12.0 34560 0.3411 0.1949 0.0639
0.2312 13.0 37440 0.3472 0.1868 0.0609
0.218 14.0 40320 0.3413 0.1866 0.0619
0.2044 15.0 43200 0.3433 0.1854 0.0591
0.1911 16.0 46080 0.3707 0.1832 0.0606
0.178 17.0 48960 0.3853 0.1894 0.0645
0.1655 18.0 51840 0.4232 0.1864 0.0634
0.154 19.0 54720 0.4142 0.1907 0.0624
0.1419 20.0 57600 0.4450 0.1967 0.0645
0.1286 21.0 60480 0.4470 0.1887 0.0623
0.1175 22.0 63360 0.4616 0.1827 0.0595
0.1077 23.0 66240 0.4958 0.1827 0.0598
0.0961 24.0 69120 0.4994 0.1933 0.0625
0.0871 25.0 72000 0.5498 0.1921 0.0627
0.0769 26.0 74880 0.5651 0.1864 0.0603
0.0697 27.0 77760 0.5475 0.1805 0.0593
0.061 28.0 80640 0.5627 0.1898 0.0612
0.0539 29.0 83520 0.5609 0.1869 0.0610
0.0471 30.0 86400 0.5873 0.1886 0.0599
0.0411 31.0 89280 0.5947 0.1833 0.0594
0.0353 32.0 92160 0.6101 0.1831 0.0587
0.0312 33.0 95040 0.6111 0.1842 0.0591
0.0271 34.0 97920 0.6419 0.1773 0.0576
0.024 35.0 100800 0.6625 0.1894 0.0603
0.0212 36.0 103680 0.6262 0.1807 0.0581
0.0188 37.0 106560 0.6520 0.1855 0.0592
0.0166 38.0 109440 0.6937 0.1854 0.0592
0.0145 39.0 112320 0.7056 0.1811 0.0596
0.0135 40.0 115200 0.6605 0.1784 0.0589
0.012 41.0 118080 0.6902 0.1888 0.0600
0.0105 42.0 120960 0.6909 0.1803 0.0595
0.0099 43.0 123840 0.6989 0.1829 0.0601
0.0089 44.0 126720 0.7174 0.1790 0.0582
0.0082 45.0 129600 0.7089 0.1810 0.0598
0.0073 46.0 132480 0.6911 0.1808 0.0590
0.0069 47.0 135360 0.7039 0.1765 0.0581
0.0062 48.0 138240 0.7128 0.1775 0.0580
0.006 49.0 141120 0.7091 0.1781 0.0585

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
3
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-109hrs-v4

Finetuned
(240)
this model