Shona
Collection
Experimental automatic speech recognition models developed for the Shona language
•
36 items
•
Updated
This model is a fine-tuned version of facebook/mms-300m on the DigitalUmuganda dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
68.8683 | 0.8696 | 5 | 16.0023 | 1.0 | 0.9538 |
67.5244 | 1.8261 | 10 | 15.5550 | 1.0 | 0.9430 |
61.8287 | 2.7826 | 15 | 12.7110 | 1.0 | 1.0 |
38.8336 | 3.9130 | 21 | 7.7816 | 1.0 | 1.0 |
28.1041 | 4.8696 | 26 | 5.3122 | 1.0 | 1.0 |
20.7205 | 5.8261 | 31 | 4.4709 | 1.0 | 1.0 |
17.9969 | 6.7826 | 36 | 4.1134 | 1.0 | 1.0 |
13.9168 | 7.9130 | 42 | 3.7606 | 1.0 | 1.0 |
15.5405 | 8.8696 | 47 | 3.6320 | 1.0 | 1.0 |
14.8928 | 9.8261 | 52 | 3.4072 | 1.0 | 1.0 |
13.9935 | 10.7826 | 57 | 3.2393 | 1.0 | 1.0 |
11.1442 | 11.9130 | 63 | 3.1078 | 1.0 | 1.0 |
12.9364 | 12.8696 | 68 | 3.0432 | 1.0 | 1.0 |
12.7554 | 13.8261 | 73 | 2.9975 | 1.0 | 1.0 |
12.5164 | 14.7826 | 78 | 2.9721 | 1.0 | 1.0 |
10.3626 | 15.9130 | 84 | 2.9607 | 1.0 | 1.0 |
12.3881 | 16.8696 | 89 | 2.9378 | 1.0 | 1.0 |
13.1535 | 17.8261 | 94 | 2.9394 | 1.0 | 1.0 |
12.2578 | 18.7826 | 99 | 2.9396 | 1.0 | 1.0 |
10.2163 | 19.9130 | 105 | 2.9266 | 1.0 | 1.0 |
12.2213 | 20.8696 | 110 | 2.9475 | 1.0 | 1.0 |
12.2561 | 21.8261 | 115 | 2.9099 | 1.0 | 1.0 |
12.2262 | 22.7826 | 120 | 2.9104 | 1.0 | 1.0 |
10.1776 | 23.9130 | 126 | 2.9074 | 1.0 | 1.0 |
12.157 | 24.8696 | 131 | 2.8994 | 1.0 | 1.0 |
12.1486 | 25.8261 | 136 | 2.9076 | 1.0 | 1.0 |
12.156 | 26.7826 | 141 | 2.9197 | 1.0 | 1.0 |
10.1287 | 27.9130 | 147 | 2.8963 | 1.0 | 1.0 |
12.1832 | 28.8696 | 152 | 2.9037 | 1.0 | 1.0 |
12.1224 | 29.8261 | 157 | 2.8914 | 1.0 | 1.0 |
12.094 | 30.7826 | 162 | 2.8870 | 1.0 | 1.0 |
10.0635 | 31.9130 | 168 | 2.9047 | 1.0 | 1.0 |
12.1146 | 32.8696 | 173 | 2.8729 | 1.0 | 1.0 |
12.0052 | 33.8261 | 178 | 2.8594 | 1.0 | 1.0 |
12.0124 | 34.7826 | 183 | 2.8509 | 1.0 | 1.0 |
10.0458 | 35.9130 | 189 | 2.9509 | 1.0 | 1.0 |
12.1021 | 36.8696 | 194 | 2.8455 | 1.0 | 1.0 |
11.8997 | 37.8261 | 199 | 2.8262 | 1.0 | 1.0 |
11.8208 | 38.7826 | 204 | 2.8231 | 1.0 | 1.0 |
9.8093 | 39.9130 | 210 | 2.8053 | 1.0 | 1.0 |
11.724 | 40.8696 | 215 | 2.7914 | 1.0 | 1.0 |
11.6571 | 41.8261 | 220 | 2.7760 | 1.0 | 1.0 |
11.5854 | 42.7826 | 225 | 2.7794 | 1.0 | 1.0 |
9.59 | 43.9130 | 231 | 2.7130 | 1.0 | 1.0 |
11.3268 | 44.8696 | 236 | 2.6681 | 1.0 | 0.9903 |
11.1653 | 45.8261 | 241 | 2.6518 | 1.0 | 0.9273 |
10.9978 | 46.7826 | 246 | 2.5816 | 1.0 | 0.9112 |
8.9489 | 47.9130 | 252 | 2.5036 | 1.0 | 0.9026 |
10.4282 | 48.8696 | 257 | 2.4504 | 1.0 | 0.8652 |
10.2606 | 49.8261 | 262 | 2.3633 | 1.0 | 0.8550 |
9.8352 | 50.7826 | 267 | 2.2941 | 1.0 | 0.8328 |
7.8901 | 51.9130 | 273 | 2.1868 | 1.0 | 0.8017 |
9.1182 | 52.8696 | 278 | 2.1071 | 1.0 | 0.7764 |
8.7192 | 53.8261 | 283 | 2.0319 | 1.0 | 0.6983 |
8.287 | 54.7826 | 288 | 1.9401 | 1.0 | 0.6283 |
6.5955 | 55.9130 | 294 | 1.8406 | 1.0 | 0.6137 |
7.5011 | 56.8696 | 299 | 1.7786 | 1.0 | 0.5562 |
7.1636 | 57.8261 | 304 | 1.7299 | 1.0 | 0.5691 |
6.8314 | 58.7826 | 309 | 1.6673 | 1.0 | 0.5061 |
5.4578 | 59.9130 | 315 | 1.6018 | 1.0 | 0.4657 |
6.2479 | 60.8696 | 320 | 1.5645 | 1.0 | 0.4674 |
5.8711 | 61.8261 | 325 | 1.5283 | 1.0 | 0.4500 |
5.6188 | 62.7826 | 330 | 1.4788 | 1.0 | 0.4256 |
4.4687 | 63.9130 | 336 | 1.4583 | 1.0 | 0.4233 |
5.0484 | 64.8696 | 341 | 1.4361 | 1.0 | 0.4096 |
4.8114 | 65.8261 | 346 | 1.4144 | 1.0 | 0.4062 |
4.4987 | 66.7826 | 351 | 1.4102 | 1.0 | 0.4007 |
3.5595 | 67.9130 | 357 | 1.4017 | 0.9998 | 0.3897 |
4.0309 | 68.8696 | 362 | 1.4033 | 0.9990 | 0.3850 |
3.8135 | 69.8261 | 367 | 1.3971 | 0.9981 | 0.3836 |
3.5936 | 70.7826 | 372 | 1.4172 | 0.9946 | 0.3778 |
2.8143 | 71.9130 | 378 | 1.4172 | 0.9803 | 0.3630 |
3.2126 | 72.8696 | 383 | 1.4275 | 0.9895 | 0.3667 |
3.0545 | 73.8261 | 388 | 1.4452 | 0.9735 | 0.3605 |
2.8559 | 74.7826 | 393 | 1.4479 | 0.9796 | 0.3606 |
2.2344 | 75.9130 | 399 | 1.4668 | 0.9679 | 0.3530 |
2.5623 | 76.8696 | 404 | 1.4827 | 0.9725 | 0.3532 |
2.4213 | 77.8261 | 409 | 1.5082 | 0.9803 | 0.3557 |
2.3092 | 78.7826 | 414 | 1.5162 | 0.9788 | 0.3519 |
1.8793 | 79.9130 | 420 | 1.5187 | 0.9672 | 0.3479 |
2.1443 | 80.8696 | 425 | 1.5260 | 0.9708 | 0.3518 |
2.0246 | 81.8261 | 430 | 1.5579 | 1.0002 | 0.3492 |
1.9691 | 82.7826 | 435 | 1.5867 | 1.0066 | 0.3532 |
1.6321 | 83.9130 | 441 | 1.5419 | 0.9769 | 0.3463 |
1.9106 | 84.8696 | 446 | 1.5800 | 0.9757 | 0.3477 |
1.8555 | 85.8261 | 451 | 1.5746 | 0.9669 | 0.3447 |
1.8178 | 86.7826 | 456 | 1.6088 | 0.9745 | 0.3452 |
1.4789 | 87.9130 | 462 | 1.5913 | 0.9803 | 0.3466 |
1.7375 | 88.8696 | 467 | 1.5916 | 0.9740 | 0.3454 |
1.6749 | 89.8261 | 472 | 1.6099 | 0.9647 | 0.3469 |
1.7118 | 90.7826 | 477 | 1.6322 | 1.0005 | 0.3522 |
1.3896 | 91.9130 | 483 | 1.6341 | 0.9715 | 0.3473 |
1.5778 | 92.8696 | 488 | 1.6404 | 0.9861 | 0.3469 |
1.607 | 93.8261 | 493 | 1.6349 | 0.9747 | 0.3475 |
1.6138 | 94.7826 | 498 | 1.6354 | 0.9740 | 0.3470 |
0.9601 | 95.2174 | 500 | 1.6371 | 0.9747 | 0.3467 |
Base model
facebook/mms-300m