You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

facebook/mms-1b-all

This model is a fine-tuned version of facebook/mms-1b-all on the BIG_C dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3475
  • Model Preparation Time: 0.0112
  • Wer: 0.4171
  • Cer: 0.0777

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
0.9189 1.0 3096 0.5510 0.0112 0.4860 0.1248
0.5994 2.0 6192 0.5258 0.0112 0.4870 0.1264
0.5721 3.0 9288 0.5079 0.0112 0.4638 0.1264
0.5573 4.0 12384 0.4963 0.0112 0.4410 0.1128
0.5442 5.0 15480 0.4938 0.0112 0.4449 0.1202
0.5347 6.0 18576 0.4837 0.0112 0.4348 0.1165
0.5261 7.0 21672 0.4795 0.0112 0.4205 0.1092
0.5203 8.0 24768 0.4791 0.0112 0.4237 0.1076
0.5132 9.0 27864 0.4745 0.0112 0.4159 0.1073
0.5073 10.0 30960 0.4696 0.0112 0.4162 0.1072
0.5037 11.0 34056 0.4696 0.0112 0.4227 0.1136
0.4974 12.0 37152 0.4702 0.0112 0.4042 0.1047
0.4924 13.0 40248 0.4761 0.0112 0.3916 0.1028
0.4873 14.0 43344 0.4617 0.0112 0.3977 0.1046
0.4846 15.0 46440 0.4756 0.0112 0.3926 0.1025
0.4798 16.0 49536 0.4614 0.0112 0.3980 0.1066
0.4767 17.0 52632 0.4606 0.0112 0.3940 0.1031
0.473 18.0 55728 0.4712 0.0112 0.3919 0.1030
0.4685 19.0 58824 0.4586 0.0112 0.3913 0.1032
0.4656 20.0 61920 0.4713 0.0112 0.3892 0.1034
0.4618 21.0 65016 0.4627 0.0112 0.3854 0.1020
0.4577 22.0 68112 0.4565 0.0112 0.3880 0.1015
0.4554 23.0 71208 0.4593 0.0112 0.3862 0.1034
0.4523 24.0 74304 0.4624 0.0112 0.3818 0.1015
0.4486 25.0 77400 0.4638 0.0112 0.3855 0.1024
0.446 26.0 80496 0.4574 0.0112 0.3929 0.1029
0.4426 27.0 83592 0.4662 0.0112 0.3851 0.1033
0.4407 28.0 86688 0.4633 0.0112 0.3898 0.1032
0.4378 29.0 89784 0.4614 0.0112 0.3800 0.1017
0.4337 30.0 92880 0.4595 0.0112 0.3809 0.1009
0.4312 31.0 95976 0.4681 0.0112 0.3841 0.1046
0.4277 32.0 99072 0.4575 0.0112 0.3749 0.0999
0.4257 33.0 102168 0.4583 0.0112 0.3760 0.1021
0.4224 34.0 105264 0.4566 0.0112 0.3830 0.1012
0.4205 35.0 108360 0.4718 0.0112 0.3698 0.1004
0.4159 36.0 111456 0.4642 0.0112 0.3734 0.1008
0.4141 37.0 114552 0.4601 0.0112 0.3802 0.1024
0.4118 38.0 117648 0.4665 0.0112 0.3718 0.1004
0.408 39.0 120744 0.4665 0.0112 0.3745 0.1041
0.4062 40.0 123840 0.4743 0.0112 0.3708 0.0994
0.4033 41.0 126936 0.4700 0.0112 0.3720 0.1003
0.4017 42.0 130032 0.4755 0.0112 0.3841 0.1057
0.3982 43.0 133128 0.4798 0.0112 0.3671 0.0984
0.3966 44.0 136224 0.4738 0.0112 0.3752 0.1010
0.3944 45.0 139320 0.4749 0.0112 0.3727 0.1010
0.3923 46.0 142416 0.4702 0.0112 0.3792 0.1033
0.389 47.0 145512 0.4723 0.0112 0.3714 0.1014
0.3874 48.0 148608 0.4750 0.0112 0.3733 0.1004
0.3851 49.0 151704 0.4708 0.0112 0.3747 0.1024
0.3831 50.0 154800 0.4768 0.0112 0.3688 0.0996
0.3803 51.0 157896 0.4807 0.0112 0.3673 0.0996
0.379 52.0 160992 0.4823 0.0112 0.3648 0.0991
0.3772 53.0 164088 0.4809 0.0112 0.3723 0.1002
0.3741 54.0 167184 0.4807 0.0112 0.3705 0.0996
0.3726 55.0 170280 0.4866 0.0112 0.3669 0.0990
0.371 56.0 173376 0.4793 0.0112 0.3738 0.1027
0.3695 57.0 176472 0.4789 0.0112 0.3768 0.1025
0.3668 58.0 179568 0.4774 0.0112 0.3681 0.1015
0.3656 59.0 182664 0.4783 0.0112 0.3684 0.1000
0.3639 60.0 185760 0.4848 0.0112 0.3714 0.1002
0.3615 61.0 188856 0.4893 0.0112 0.3721 0.0996
0.3596 62.0 191952 0.4808 0.0112 0.3654 0.1008

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
0
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/mms-1B_all_BIG_C_Bemba_100hr_v1

Finetuned
(214)
this model

Evaluation results