Model Mixed by Reborn Merge Method
Keep in mind that the accuracy of your desired questions may vary for this merge.
Will it be possible to use this merge as a base for future my another merge work?
I hope this merge model combines information and grammar appropriately so that it doesn't just give strange, nonsensical answers. Then I can make new cool food with the next merge...
ps : What I am saying above is not to say that each model is strange. It means I could be doing the merge wrong. I hope there is no misunderstanding.
I am open for the "Collaboration & ETC" if you want
Reborn Merge Information
[models info]
reference_model_name = "MLP-KTLim/llama-3-Korean-Bllossom-8B"
base_model_name = "NousResearch/Meta-Llama-3-8B-Instruct"
target_model_name = "maum-ai/Llama-3-MAAL-8B-Instruct-v0.1"
[interpolating mismatch part vocab]
Interpolating tensor 'model.embed_tokens.weight' to match the shape: torch.Size([145088, 4096]) vs torch.Size([128256, 4096])
Interpolating tensor 'lm_head.weight' to match the shape: torch.Size([145088, 4096]) vs torch.Size([128256, 4096])
Interpolating tensor 'model.embed_tokens.weight' to match the shape: torch.Size([128256, 4096]) vs torch.Size([128257, 4096])
Interpolating tensor 'lm_head.weight' to match the shape: torch.Size([128256, 4096]) vs torch.Size([128257, 4096])
Ollama Create
jaylee@lees-MacBook-Pro-2 % ./ollama create Joah -f ./gguf/Joah-Llama-3-MAAL-MLP-KoEn-8B-Reborn/Modelfile_Q5_K_M
transferring model data
creating model layer
creating template layer
creating system layer
creating parameters layer
creating config layer
using already created layer sha256:4eadb53f0c70683aeab133c60d76b8ffc9f41ca5d49524d4b803c19e5ce7e3a5
using already created layer sha256:8ab4849b038cf0abc5b1c9b8ee1443dca6b93a045c2272180d985126eb40bf6f
writing layer sha256:ae2974c64ea5d6f488eeb1b10717a270f48fb3452432589db6f5e60472ae96ac
writing layer sha256:74ef6315972b317734fe01e7e1ad5b49fce1fa8ed3978cb66501ecb8c3a2e984
writing layer sha256:83882a5e957b8ce0d454f26bcedb2819413b49d6b967b28d60edb8ac61edfa58
writing manifest
success
MODELFILE
FROM joah-llama-3-maal-mlp-koen-8b-reborn-Q5_K_M.gguf
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>"""
SYSTEM """
μΉμ ν μ±λ΄μΌλ‘μ μλλ°©μ μμ²μ μ΅λν μμΈνκ³ μΉμ νκ² λ΅νμ. λͺ¨λ λλ΅μ νκ΅μ΄(Korean)μΌλ‘ λλ΅ν΄μ€.
"""
PARAMETER num_keep 24
PARAMETER temperature 0.7
PARAMETER num_predict 3000
PARAMETER stop "<|start_header_id|>"
PARAMETER stop "<|end_header_id|>"
PARAMETER stop "<|eot_id|>"
Citation
Language Model
@misc{bllossom,
author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim},
title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean},
year = {2024},
journal = {LREC-COLING 2024},
paperLink = {\url{https://arxiv.org/pdf/2403.10882}},
},
}
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
- Downloads last month
- 15