distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9987
  • Accuracy: {'accuracy': 0.885}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3276 {'accuracy': 0.882}
0.4241 2.0 500 0.3495 {'accuracy': 0.895}
0.4241 3.0 750 0.3984 {'accuracy': 0.891}
0.2107 4.0 1000 0.5830 {'accuracy': 0.886}
0.2107 5.0 1250 0.7312 {'accuracy': 0.878}
0.0707 6.0 1500 0.8286 {'accuracy': 0.89}
0.0707 7.0 1750 0.9673 {'accuracy': 0.881}
0.0208 8.0 2000 0.9845 {'accuracy': 0.885}
0.0208 9.0 2250 0.9831 {'accuracy': 0.884}
0.0119 10.0 2500 0.9987 {'accuracy': 0.885}

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.2.0+cpu
  • Datasets 2.17.0
  • Tokenizers 0.15.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for asavochkin/distilbert-base-uncased-lora-text-classification

Adapter
(221)
this model