swin-tiny-patch4-window7-224-swinnn

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0883
  • Accuracy: 0.8232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2802 0.9979 351 0.2783 0.3222
0.2702 1.9986 703 0.2652 0.376
0.2565 2.9993 1055 0.2474 0.431
0.2448 4.0 1407 0.2358 0.4558
0.2433 4.9979 1758 0.2223 0.4994
0.2095 5.9986 2110 0.2058 0.5434
0.2197 6.9993 2462 0.1963 0.568
0.2093 8.0 2814 0.1906 0.5764
0.2047 8.9979 3165 0.1888 0.5874
0.1952 9.9986 3517 0.1743 0.6192
0.1926 10.9993 3869 0.1740 0.6234
0.1838 12.0 4221 0.1667 0.6448
0.1822 12.9979 4572 0.1629 0.6468
0.1838 13.9986 4924 0.1587 0.6638
0.1689 14.9993 5276 0.1563 0.675
0.1697 16.0 5628 0.1472 0.6916
0.1643 16.9979 5979 0.1435 0.6912
0.1655 17.9986 6331 0.1395 0.706
0.1555 18.9993 6683 0.1371 0.714
0.1577 20.0 7035 0.1321 0.7258
0.1575 20.9979 7386 0.1318 0.7284
0.141 21.9986 7738 0.1228 0.7438
0.151 22.9993 8090 0.1260 0.7392
0.1403 24.0 8442 0.1178 0.7558
0.1434 24.9979 8793 0.1185 0.7534
0.1465 25.9986 9145 0.1162 0.759
0.1362 26.9993 9497 0.1121 0.769
0.138 28.0 9849 0.1099 0.769
0.1293 28.9979 10200 0.1094 0.7754
0.1273 29.9986 10552 0.1091 0.7768
0.1363 30.9993 10904 0.1078 0.7766
0.1293 32.0 11256 0.1091 0.7736
0.1275 32.9979 11607 0.1068 0.7806
0.1263 33.9986 11959 0.1040 0.7888
0.1243 34.9993 12311 0.1019 0.7954
0.1237 36.0 12663 0.1016 0.7958
0.1243 36.9979 13014 0.0993 0.7988
0.1194 37.9986 13366 0.1011 0.7986
0.1213 38.9993 13718 0.0959 0.8064
0.1155 40.0 14070 0.0942 0.8108
0.1179 40.9979 14421 0.0950 0.8072
0.1057 41.9986 14773 0.0924 0.8166
0.1042 42.9993 15125 0.0924 0.8152
0.1151 44.0 15477 0.0928 0.8132
0.1122 44.9979 15828 0.0920 0.8146
0.11 45.9986 16180 0.0906 0.8152
0.1096 46.9993 16532 0.0894 0.82
0.1082 48.0 16884 0.0885 0.821
0.108 48.9979 17235 0.0886 0.8204
0.112 49.8934 17550 0.0883 0.8232

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.1.0a0+32f93b1
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
134
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.