lilt-en-funsd / README.md
arnabbasak's picture
End of training
f7a86e8
---
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
model-index:
- name: lilt-en-funsd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lilt-en-funsd
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Account Name.key: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Account Name.value: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Account No.key: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Account No.value: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Overall Precision: 1.0
- Overall Recall: 1.0
- Overall F1: 1.0
- Overall Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Account Name.key | Account Name.value | Account No.key | Account No.value | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.0635 | 100.0 | 200 | 0.0001 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0002 | 200.0 | 400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 300.0 | 600 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 400.0 | 800 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 500.0 | 1000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0 | 600.0 | 1200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0 | 700.0 | 1400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0 | 800.0 | 1600 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0 | 900.0 | 1800 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0 | 1000.0 | 2000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0 | 1100.0 | 2200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0 | 1200.0 | 2400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1