SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("armaniii/all-mpnet-base-v2-augmentation-indomain-bm25-sts")
# Run inference
sentences = [
    'Fanatics of the pro – life argument are sometimes so focused on the fetus that they put no value to the mother ’s life and do not even consider the viability of the fetus .',
    'Life is life , whether it s outside the womb or not .',
    'Legalization of marijuana is phasing out black markets and taking money away from drug cartels, organized crime, and street gangs.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.7295
spearman_cosine 0.7235
pearson_manhattan 0.7104
spearman_manhattan 0.7118
pearson_euclidean 0.7212
spearman_euclidean 0.7235
pearson_dot 0.7295
spearman_dot 0.7235
pearson_max 0.7295
spearman_max 0.7235

Semantic Similarity

Metric Value
pearson_cosine 0.7146
spearman_cosine 0.6886
pearson_manhattan 0.707
spearman_manhattan 0.6837
pearson_euclidean 0.7115
spearman_euclidean 0.6886
pearson_dot 0.7146
spearman_dot 0.6886
pearson_max 0.7146
spearman_max 0.6886

Training Details

Training Dataset

Unnamed Dataset

  • Size: 17,093 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 33.23 tokens
    • max: 97 tokens
    • min: 4 tokens
    • mean: 30.75 tokens
    • max: 96 tokens
    • min: 0.09
    • mean: 0.55
    • max: 0.95
  • Samples:
    sentence1 sentence2 score
    It is true that a Colorado study found a post-legalization increase in youths being treated for marijuana exposure . In Colorado , recent figures correlate with the years since marijuana legalization to show a dramatic decrease in overall highway fatalities – and a two-fold increase in the frequency of marijuana-positive drivers in fatal auto crashes . 0.4642857142857143
    The idea of a school uniform is that students wear the uniform at school , but do not wear the uniform , say , at a disco or other events outside school . If it means that the schoolrooms will be more orderly , more disciplined , and that our young people will learn to evaluate themselves by what they are on the inside instead of what they 're wearing on the outside , then our public schools should be able to require their students to wear school uniforms . " 0.5714285714285714
    The resulting embryonic stem cells could then theoretically be grown into adult cells to replace the ailing person 's mutated cells . However , there is a more serious , less cartoonish objection to turning procreation into manufacturing . 0.4464285714285714
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 340 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 8 tokens
    • mean: 33.76 tokens
    • max: 105 tokens
    • min: 6 tokens
    • mean: 31.86 tokens
    • max: 102 tokens
    • min: 0.09
    • mean: 0.5
    • max: 0.89
  • Samples:
    sentence1 sentence2 score
    [ quoting himself from Furman v. Georgia , 408 U.S. 238 , 257 ( 1972 ) ] As such it is a penalty that ' subjects the individual to a fate forbidden by the principle of civilized treatment guaranteed by the [ Clause ] . ' It provides a deterrent for prisoners already serving a life sentence . 0.3214285714285714
    Of those savings , $ 25.7 billion would accrue to state and local governments , while $ 15.6 billion would accrue to the federal government . Jaime Smith , deputy communications director for the governor ’s office , said , “ The legalization initiative was not driven by a desire for a revenue , but it has provided a small assist for our state budget . ” 0.5357142857142857
    If the uterus is designed to sustain an unborn child ’s life , do n’t unborn children have a right to receive nutrition and shelter through the one organ designed to provide them with that ordinary care ? We as parents are supposed to protect our children at all costs whether they are in the womb or not . 0.7678571428571428
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • warmup_ratio: 0.1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss sts-test_spearman_cosine
0.0935 100 0.0151 0.0098 0.7013
0.1871 200 0.0069 0.0112 0.6857
0.2806 300 0.0058 0.0106 0.6860
0.3742 400 0.0059 0.0102 0.6915
0.4677 500 0.0057 0.0097 0.6903
0.5613 600 0.0049 0.0100 0.6797
0.6548 700 0.0055 0.0101 0.6766
0.7484 800 0.0049 0.0116 0.6529
0.8419 900 0.0049 0.0105 0.6572
0.9355 1000 0.0051 0.0115 0.6842
1.0290 1100 0.0038 0.0094 0.7000
1.1225 1200 0.0029 0.0091 0.7027
1.2161 1300 0.0026 0.0093 0.7016
1.3096 1400 0.0027 0.0088 0.7192
1.4032 1500 0.0027 0.0097 0.7065
1.4967 1600 0.0028 0.0091 0.7011
1.5903 1700 0.0027 0.0095 0.7186
1.6838 1800 0.0026 0.0087 0.7277
1.7774 1900 0.0024 0.0085 0.7227
1.8709 2000 0.0025 0.0086 0.7179
1.9645 2100 0.0022 0.0086 0.7195
2.0580 2200 0.0017 0.0088 0.7183
2.1515 2300 0.0014 0.0088 0.7229
2.2451 2400 0.0014 0.0086 0.7200
2.3386 2500 0.0013 0.0088 0.7248
2.4322 2600 0.0014 0.0085 0.7286
2.5257 2700 0.0015 0.0085 0.7283
2.6193 2800 0.0014 0.0085 0.7263
2.7128 2900 0.0014 0.0085 0.7248
2.8064 3000 0.0013 0.0087 0.7191
2.8999 3100 0.0011 0.0086 0.7225
2.9935 3200 0.0012 0.0085 0.7235
3.0 3207 - - 0.6886

Framework Versions

  • Python: 3.9.2
  • Sentence Transformers: 3.0.1
  • Transformers: 4.43.1
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.14.7
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for armaniii/all-mpnet-base-v2-augmentation-indomain-bm25-sts

Finetuned
(197)
this model

Evaluation results