kikoarizeai's picture
Update README.md
f3997bc
|
raw
history blame
2.34 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - ecommerce_reviews_with_language_drift
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert_reviews_with_language_drift
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: ecommerce_reviews_with_language_drift
          type: ecommerce_reviews_with_language_drift
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.818
          - name: F1
            type: f1
            value: 0.8167126877417763
widget:
  - text: >-
      Poor quality of fabric and ridiculously tight at chest. It's way too
      short.
    example_title: Negative
  - text: >-
      One worked perfectly, but the other one has a slight leak and we end up
      with water underneath the filter.
    example_title: Neutral
  - text: I liked the price most! Nothing to dislike here!
    example_title: Positive

distilbert_reviews_with_language_drift

This model is a fine-tuned version of distilbert-base-uncased on the ecommerce_reviews_with_language_drift dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4970
  • Accuracy: 0.818
  • F1: 0.8167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.593 1.0 500 0.4723 0.799 0.7976
0.3714 2.0 1000 0.4679 0.818 0.8177
0.2652 3.0 1500 0.4970 0.818 0.8167

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1