Disfluency Labeling - Ariel Cerda
This model is a fine-tuned version of FacebookAI/roberta-large on the TimeStamped dataset. It achieves the following results on the evaluation set:
- Loss: 0.6249
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9075
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2995 | 0.2194 | 500 | 0.3309 | 0.9467 | 0.3143 | 0.4720 | 0.9365 |
0.354 | 0.4388 | 1000 | 0.2799 | 0.9079 | 0.3216 | 0.4750 | 0.9366 |
0.3717 | 0.6582 | 1500 | 0.2715 | 0.9458 | 0.3351 | 0.4948 | 0.9381 |
0.3362 | 0.8776 | 2000 | 0.3026 | 0.9153 | 0.3195 | 0.4737 | 0.9363 |
0.2668 | 1.0970 | 2500 | 0.3130 | 0.9519 | 0.3320 | 0.4923 | 0.9376 |
0.3311 | 1.3164 | 3000 | 0.2815 | 0.9687 | 0.3299 | 0.4922 | 0.9379 |
0.3345 | 1.5358 | 3500 | 0.3048 | 0.9976 | 0.2506 | 0.4006 | 0.9307 |
0.2945 | 1.7552 | 4000 | 0.2890 | 0.9621 | 0.3326 | 0.4943 | 0.9378 |
0.2648 | 1.9746 | 4500 | 0.2850 | 0.9740 | 0.3311 | 0.4942 | 0.9380 |
0.3272 | 2.1939 | 5000 | 0.2827 | 0.9657 | 0.3430 | 0.5062 | 0.9388 |
0.3161 | 2.4133 | 5500 | 0.2759 | 0.9237 | 0.3357 | 0.4924 | 0.9367 |
0.2687 | 2.6327 | 6000 | 0.2891 | 0.9757 | 0.3308 | 0.4941 | 0.9381 |
0.2948 | 2.8521 | 6500 | 0.2872 | 0.9784 | 0.3177 | 0.4796 | 0.9368 |
0.2608 | 3.0715 | 7000 | 0.2901 | 0.8284 | 0.3445 | 0.4866 | 0.9338 |
0.2947 | 3.2909 | 7500 | 0.2829 | 0.9572 | 0.3341 | 0.4954 | 0.9379 |
0.2939 | 3.5103 | 8000 | 0.2814 | 0.9702 | 0.3277 | 0.4900 | 0.9377 |
0.2581 | 3.7297 | 8500 | 0.2764 | 0.9757 | 0.3311 | 0.4944 | 0.9381 |
0.3108 | 3.9491 | 9000 | 0.2809 | 0.9721 | 0.3293 | 0.4919 | 0.9379 |
0.2929 | 4.1685 | 9500 | 0.2874 | 0.9737 | 0.3274 | 0.4901 | 0.9377 |
0.2939 | 4.3879 | 10000 | 0.2760 | 0.9689 | 0.3323 | 0.4949 | 0.9381 |
0.3173 | 4.6073 | 10500 | 0.2784 | 0.9722 | 0.3311 | 0.4940 | 0.9381 |
0.2784 | 4.8267 | 11000 | 0.2825 | 0.9709 | 0.3360 | 0.4992 | 0.9384 |
0.2593 | 5.0461 | 11500 | 0.2775 | 0.9724 | 0.3335 | 0.4967 | 0.9383 |
0.2507 | 5.2655 | 12000 | 0.2985 | 0.9708 | 0.3348 | 0.4978 | 0.9383 |
0.2707 | 5.4849 | 12500 | 0.2805 | 0.9714 | 0.3421 | 0.5060 | 0.9389 |
0.2775 | 5.7043 | 13000 | 0.2757 | 0.9697 | 0.3421 | 0.5057 | 0.9390 |
0.5178 | 5.9237 | 13500 | 0.4682 | 0.9052 | 0.0845 | 0.1545 | 0.9151 |
0.3553 | 6.1430 | 14000 | 0.3657 | 0.9574 | 0.1988 | 0.3292 | 0.9257 |
0.3496 | 6.3624 | 14500 | 0.3986 | 0.9565 | 0.1945 | 0.3233 | 0.9253 |
0.3452 | 6.5818 | 15000 | 0.4337 | 0.0 | 0.0 | 0.0 | 0.9075 |
0.3931 | 6.8012 | 15500 | 0.5834 | 0.0 | 0.0 | 0.0 | 0.9075 |
0.4035 | 7.0206 | 16000 | 0.5584 | 0.0 | 0.0 | 0.0 | 0.9075 |
0.3831 | 7.2400 | 16500 | 0.5585 | 0.0 | 0.0 | 0.0 | 0.9075 |
0.2817 | 7.4594 | 17000 | 0.5946 | 0.0 | 0.0 | 0.0 | 0.9075 |
0.3641 | 7.6788 | 17500 | 0.6069 | 0.0 | 0.0 | 0.0 | 0.9075 |
0.3866 | 7.8982 | 18000 | 0.6249 | 0.0 | 0.0 | 0.0 | 0.9075 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 106
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for arielcerdap/disfluency_roberta_large
Base model
FacebookAI/roberta-large