See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: bigscience/bloom-560m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 746d1bb5f8d889e1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/746d1bb5f8d889e1_train_data.json
type:
field_input: premise
field_instruction: question
field_output: conceptual_explanation
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: ardaspear/c2918113-fd16-489c-811c-5b2f531470d5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/746d1bb5f8d889e1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 014e52ff-09b0-4c66-b763-44eafae63413
wandb_project: Gradients-On-Five
wandb_run: your_name
wandb_runid: 014e52ff-09b0-4c66-b763-44eafae63413
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
c2918113-fd16-489c-811c-5b2f531470d5
This model is a fine-tuned version of bigscience/bloom-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.7321
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0020 | 1 | 4.3487 |
17.5712 | 0.0099 | 5 | 4.2948 |
17.7396 | 0.0199 | 10 | 3.9497 |
15.2672 | 0.0298 | 15 | 3.4717 |
14.4764 | 0.0397 | 20 | 3.1684 |
12.2007 | 0.0497 | 25 | 2.9940 |
11.6859 | 0.0596 | 30 | 2.8514 |
11.3034 | 0.0695 | 35 | 2.7921 |
11.194 | 0.0795 | 40 | 2.7456 |
11.2192 | 0.0894 | 45 | 2.7259 |
10.7126 | 0.0994 | 50 | 2.7321 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for ardaspear/c2918113-fd16-489c-811c-5b2f531470d5
Base model
bigscience/bloom-560m