See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: echarlaix/tiny-random-mistral
bf16: auto
chat_template: chatml
dataset_prepared_path: null
datasets:
- data_files:
- a74ecd5c5b3909f6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a74ecd5c5b3909f6_train_data.json
type:
field_instruction: prompt
field_output: reference_response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: ardaspear/35064bc1-2c15-4036-bbb1-561a74589740
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/a74ecd5c5b3909f6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 35064bc1-2c15-4036-bbb1-561a74589740
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 35064bc1-2c15-4036-bbb1-561a74589740
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
35064bc1-2c15-4036-bbb1-561a74589740
This model is a fine-tuned version of echarlaix/tiny-random-mistral on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3595
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
41.5398 | 0.0002 | 1 | 10.3783 |
41.5426 | 0.0008 | 5 | 10.3779 |
41.5231 | 0.0016 | 10 | 10.3762 |
41.4979 | 0.0024 | 15 | 10.3736 |
41.4805 | 0.0033 | 20 | 10.3706 |
41.4671 | 0.0041 | 25 | 10.3673 |
41.4543 | 0.0049 | 30 | 10.3643 |
41.4492 | 0.0057 | 35 | 10.3618 |
41.4506 | 0.0065 | 40 | 10.3603 |
41.4457 | 0.0073 | 45 | 10.3597 |
41.4237 | 0.0082 | 50 | 10.3595 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 30
Model tree for ardaspear/35064bc1-2c15-4036-bbb1-561a74589740
Base model
echarlaix/tiny-random-mistral