See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/SmolLM2-1.7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0bbdc63428fb3e32_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0bbdc63428fb3e32_train_data.json
type:
field_input: choices
field_instruction: question
field_output: context
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: ardaspear/1183fdaa-5526-41dd-918d-2ad6e6bf72c1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/0bbdc63428fb3e32_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: dbb934a5-4430-44eb-bb81-0c63e1b19d70
wandb_project: Gradients-On-Five
wandb_run: your_name
wandb_runid: dbb934a5-4430-44eb-bb81-0c63e1b19d70
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
1183fdaa-5526-41dd-918d-2ad6e6bf72c1
This model is a fine-tuned version of unsloth/SmolLM2-1.7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4126
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 1.5018 |
1.1942 | 0.0097 | 34 | 1.1813 |
1.0275 | 0.0193 | 68 | 1.0012 |
0.8719 | 0.0290 | 102 | 0.8575 |
0.7679 | 0.0387 | 136 | 0.7138 |
0.6599 | 0.0483 | 170 | 0.6068 |
0.5316 | 0.0580 | 204 | 0.5341 |
0.4309 | 0.0677 | 238 | 0.4810 |
0.5133 | 0.0773 | 272 | 0.4458 |
0.3843 | 0.0870 | 306 | 0.4252 |
0.35 | 0.0967 | 340 | 0.4159 |
0.4115 | 0.1063 | 374 | 0.4126 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 17