aprilzoo's picture
mc-ai/qlora-llama70-ft-full-dataset
8d78a0c verified
metadata
base_model: meta-llama/Llama-2-70b-hf
tags:
  - generated_from_trainer
model-index:
  - name: qlora-llama70-ft-full-dataset
    results: []
library_name: peft

qlora-llama70-ft-full-dataset

This model is a fine-tuned version of meta-llama/Llama-2-70b-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: float16

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0025
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • PEFT 0.5.0
  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.1
  • Tokenizers 0.15.0