wav2vec2-large-xls-r-300m-as

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9068
  • Wer: 0.6679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.12
  • num_epochs: 240

Training results

Training Loss Epoch Step Validation Loss Wer
5.7027 21.05 400 3.4157 1.0
1.1638 42.1 800 1.3498 0.7461
0.2266 63.15 1200 1.6147 0.7273
0.1473 84.21 1600 1.6649 0.7108
0.1043 105.26 2000 1.7691 0.7090
0.0779 126.31 2400 1.8300 0.7009
0.0613 147.36 2800 1.8681 0.6916
0.0471 168.41 3200 1.8567 0.6875
0.0343 189.46 3600 1.9054 0.6840
0.0265 210.51 4000 1.9020 0.6786
0.0219 231.56 4400 1.9068 0.6679

Framework versions

  • Transformers 4.16.0
  • Pytorch 1.10.0+cu111
  • Datasets 1.17.0
  • Tokenizers 0.10.3

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_7_0 with split test
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-as --dataset mozilla-foundation/common_voice_7_0 --config as --split test

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-as"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "as", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "জাহাজত তো তিশকুৰলৈ যাব কিন্তু জহাজিটো আহিপনে"

Eval results on Common Voice 7 "test" (WER):

Without LM With LM (run ./eval.py)
67 56.995
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train anuragshas/wav2vec2-large-xls-r-300m-as

Evaluation results