See axolotl config
axolotl version: 0.4.1
base_model: Crystalcareai/Meta-llama-3.1-8b-instruct
bf16: 'True'
chat_template: chatml
dataset_prepared_path: ./sft_processed
dataset_processes: 12
datasets:
- field_messages: messages
path: sft_dataset
type: sharegpt
deepspeed: /axolotl/deepspeed_configs/zero3_bf16.json
eval_batch_size: 1
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
learning_rate: 5.0e-06
logging_steps: 1
lr_scheduler: cosine
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: data/sft-full
pad_to_sequence_len: true
sample_packing: true
save_safetensors: true
save_total_limit: 0
saves_per_epoch: 0
seed: 42
sequence_len: 4096
special_tokens:
pad_token: <|end_of_text|>
tf32: false
tokens: []
use_tensorboard: true
val_set_size: 0
data/sft-full
This model is a fine-tuned version of Crystalcareai/Meta-llama-3.1-8b-instruct on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
Training results
Framework versions
- Transformers 4.43.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.