distilbert-base-uncased-survey-category-0.0.2

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1386
  • Accuracy: 0.9837

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 238 0.0975 0.9756
No log 2.0 476 0.1126 0.9715
0.3352 3.0 714 0.1133 0.9675
0.3352 4.0 952 0.0966 0.9797
0.0635 5.0 1190 0.1036 0.9756
0.0635 6.0 1428 0.1052 0.9797
0.0467 7.0 1666 0.1370 0.9797
0.0467 8.0 1904 0.1377 0.9756
0.0362 9.0 2142 0.1259 0.9837
0.0362 10.0 2380 0.1365 0.9837
0.0313 11.0 2618 0.1306 0.9837
0.0313 12.0 2856 0.1414 0.9797
0.0288 13.0 3094 0.1483 0.9837
0.0288 14.0 3332 0.1309 0.9797
0.0282 15.0 3570 0.1356 0.9837
0.0282 16.0 3808 0.1410 0.9837
0.028 17.0 4046 0.1322 0.9837
0.028 18.0 4284 0.1415 0.9837
0.026 19.0 4522 0.1397 0.9837
0.026 20.0 4760 0.1386 0.9837

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
381
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for ansilmbabl/distilbert-base-uncased-survey-category-0.0.2

Finetuned
(7329)
this model