nace-pl-v3 / README.md
annazdr's picture
Add new SentenceTransformer model.
b3901e2 verified
metadata
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:12826
  - loss:BatchAllTripletLoss
widget:
  - source_sentence: ' '
    sentences:
      - ' derrick erection in situ, repairing and dismantling'
      - Działalność usługowa związana z przeprowadzkami
      - >-
        provision of intermediation services for the purchase of land, water or
        air transportation for passengers
  - source_sentence: g
    sentences:
      - crushing, cleaning and sorting of other waste, e
      - ' students, scientists, staff, members as well as operation of government archives- activities related to the acquisition or collection of archives'
      - ' fundraising organisation services on a contract or fee basis- court reporting or stenotype recording services- public stenography services- real-time (i'
  - source_sentence: g
    sentences:
      - the programming may be of a general or specialised nature (e
      - ), słodkich lub solonych
      - composite diagnostic or laboratory reagents
  - source_sentence: palliative nursing care for out-patients
    sentences:
      - ' pre-sorting, addressing'
      - retail sale of recording media players and recorders
      - manufacture of gaiters, leggings and similar articles
  - source_sentence: ' this class also includes: laboratory doping control activities'
    sentences:
      - ' freight transport on mainline rail networks as well as short line freight railroads'
      - telecommunication carrier equipment
      - manufacture of toner cartridges

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("annazdr/nace-pl-v3")
# Run inference
sentences = [
    ' this class also includes: laboratory doping control activities',
    'manufacture of toner cartridges',
    'telecommunication carrier equipment',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 12,826 training samples
  • Columns: sentence_0 and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 label
    type string int
    details
    • min: 2 tokens
    • mean: 18.09 tokens
    • max: 128 tokens
    • 1: ~0.10%
    • 2: ~0.30%
    • 3: ~0.10%
    • 4: ~0.40%
    • 7: ~0.20%
    • 8: ~0.10%
    • 9: ~0.20%
    • 10: ~0.30%
    • 11: ~0.30%
    • 13: ~0.30%
    • 14: ~0.10%
    • 18: ~0.20%
    • 19: ~0.20%
    • 20: ~0.10%
    • 21: ~0.20%
    • 22: ~0.10%
    • 23: ~0.20%
    • 24: ~0.30%
    • 25: ~0.30%
    • 26: ~0.10%
    • 28: ~0.10%
    • 29: ~0.10%
    • 31: ~0.10%
    • 32: ~0.10%
    • 33: ~0.10%
    • 34: ~0.20%
    • 35: ~0.10%
    • 37: ~0.20%
    • 39: ~0.20%
    • 40: ~0.40%
    • 41: ~0.40%
    • 42: ~0.10%
    • 44: ~0.60%
    • 45: ~0.10%
    • 46: ~0.20%
    • 48: ~0.20%
    • 49: ~0.10%
    • 51: ~0.10%
    • 52: ~0.30%
    • 54: ~0.20%
    • 55: ~0.40%
    • 56: ~0.10%
    • 57: ~0.40%
    • 58: ~0.20%
    • 59: ~0.30%
    • 60: ~0.20%
    • 61: ~0.30%
    • 62: ~0.20%
    • 63: ~0.40%
    • 64: ~0.60%
    • 65: ~0.50%
    • 66: ~1.00%
    • 67: ~0.10%
    • 69: ~0.50%
    • 70: ~0.20%
    • 71: ~0.10%
    • 72: ~0.40%
    • 73: ~0.60%
    • 74: ~0.20%
    • 75: ~0.10%
    • 76: ~0.30%
    • 77: ~0.10%
    • 78: ~0.10%
    • 80: ~0.10%
    • 81: ~0.10%
    • 82: ~0.80%
    • 83: ~0.50%
    • 84: ~0.10%
    • 85: ~0.10%
    • 86: ~0.30%
    • 87: ~0.10%
    • 88: ~0.30%
    • 89: ~0.30%
    • 90: ~0.60%
    • 91: ~0.30%
    • 92: ~0.10%
    • 93: ~0.30%
    • 94: ~0.20%
    • 95: ~0.20%
    • 96: ~0.20%
    • 97: ~0.80%
    • 98: ~0.20%
    • 99: ~0.70%
    • 100: ~0.70%
    • 101: ~0.50%
    • 102: ~0.60%
    • 103: ~0.20%
    • 104: ~0.10%
    • 105: ~0.10%
    • 106: ~0.20%
    • 108: ~0.10%
    • 109: ~0.40%
    • 110: ~0.20%
    • 111: ~0.30%
    • 114: ~0.10%
    • 115: ~0.10%
    • 118: ~0.20%
    • 120: ~0.10%
    • 122: ~0.20%
    • 123: ~0.10%
    • 125: ~0.20%
    • 126: ~0.30%
    • 127: ~0.60%
    • 128: ~0.80%
    • 129: ~0.10%
    • 130: ~0.10%
    • 133: ~0.20%
    • 135: ~0.20%
    • 136: ~0.30%
    • 137: ~0.20%
    • 139: ~0.40%
    • 140: ~0.20%
    • 143: ~0.30%
    • 144: ~0.10%
    • 150: ~0.10%
    • 151: ~0.50%
    • 152: ~0.10%
    • 153: ~0.10%
    • 154: ~0.60%
    • 155: ~0.20%
    • 156: ~0.10%
    • 157: ~0.10%
    • 158: ~0.30%
    • 161: ~0.20%
    • 162: ~0.30%
    • 164: ~0.10%
    • 165: ~0.20%
    • 168: ~0.10%
    • 170: ~0.20%
    • 172: ~0.10%
    • 174: ~0.20%
    • 175: ~0.10%
    • 177: ~0.10%
    • 178: ~0.10%
    • 181: ~0.20%
    • 182: ~0.30%
    • 183: ~0.20%
    • 184: ~0.40%
    • 185: ~0.30%
    • 186: ~0.20%
    • 187: ~0.40%
    • 188: ~0.10%
    • 189: ~0.10%
    • 190: ~0.20%
    • 191: ~0.60%
    • 192: ~0.10%
    • 193: ~0.20%
    • 197: ~0.10%
    • 199: ~0.10%
    • 200: ~0.30%
    • 201: ~0.20%
    • 202: ~0.10%
    • 205: ~0.20%
    • 208: ~0.10%
    • 209: ~0.10%
    • 210: ~0.10%
    • 211: ~0.10%
    • 212: ~0.10%
    • 213: ~0.20%
    • 215: ~0.20%
    • 216: ~0.30%
    • 217: ~0.20%
    • 218: ~0.20%
    • 219: ~0.10%
    • 220: ~0.20%
    • 222: ~0.10%
    • 223: ~0.10%
    • 225: ~0.10%
    • 226: ~0.10%
    • 227: ~0.20%
    • 228: ~0.10%
    • 229: ~0.10%
    • 230: ~0.30%
    • 231: ~0.20%
    • 232: ~0.10%
    • 233: ~0.10%
    • 235: ~0.20%
    • 236: ~0.20%
    • 237: ~0.20%
    • 241: ~0.40%
    • 242: ~0.10%
    • 243: ~0.30%
    • 244: ~0.10%
    • 245: ~0.40%
    • 246: ~0.10%
    • 247: ~0.30%
    • 249: ~0.40%
    • 253: ~0.20%
    • 254: ~0.10%
    • 255: ~0.10%
    • 256: ~0.20%
    • 257: ~0.30%
    • 258: ~0.10%
    • 259: ~0.10%
    • 260: ~0.40%
    • 264: ~0.10%
    • 265: ~0.10%
    • 266: ~0.10%
    • 268: ~0.10%
    • 270: ~0.10%
    • 271: ~0.30%
    • 274: ~0.10%
    • 275: ~0.10%
    • 276: ~0.20%
    • 277: ~0.20%
    • 278: ~0.30%
    • 280: ~0.10%
    • 281: ~0.10%
    • 282: ~0.10%
    • 283: ~0.10%
    • 285: ~0.50%
    • 286: ~0.20%
    • 288: ~0.10%
    • 289: ~0.20%
    • 290: ~0.20%
    • 291: ~0.20%
    • 292: ~0.20%
    • 293: ~0.20%
    • 294: ~0.20%
    • 296: ~0.20%
    • 297: ~0.20%
    • 298: ~0.10%
    • 300: ~0.10%
    • 301: ~0.10%
    • 302: ~0.20%
    • 303: ~0.30%
    • 304: ~0.20%
    • 306: ~0.30%
    • 307: ~0.10%
    • 308: ~0.20%
    • 310: ~0.10%
    • 311: ~0.30%
    • 312: ~0.30%
    • 313: ~0.20%
    • 314: ~0.30%
    • 315: ~0.40%
    • 317: ~0.10%
    • 318: ~0.10%
    • 319: ~0.10%
    • 320: ~0.10%
    • 322: ~0.10%
    • 324: ~0.60%
    • 325: ~0.10%
    • 327: ~0.20%
    • 328: ~0.10%
    • 329: ~0.10%
    • 330: ~0.10%
    • 331: ~0.10%
    • 332: ~0.20%
    • 333: ~0.10%
    • 334: ~0.60%
    • 335: ~0.30%
    • 336: ~0.30%
    • 337: ~0.30%
    • 339: ~0.10%
    • 341: ~0.30%
    • 342: ~0.10%
    • 343: ~0.10%
    • 344: ~0.20%
    • 345: ~0.10%
    • 346: ~0.20%
    • 347: ~0.20%
    • 348: ~0.30%
    • 349: ~0.40%
    • 351: ~0.40%
    • 352: ~0.10%
    • 353: ~0.10%
    • 354: ~0.30%
    • 356: ~0.30%
    • 357: ~0.10%
    • 358: ~0.10%
    • 359: ~0.10%
    • 360: ~0.40%
    • 361: ~0.30%
    • 364: ~0.20%
    • 366: ~0.50%
    • 367: ~0.30%
    • 368: ~0.40%
    • 369: ~0.30%
    • 370: ~0.10%
    • 372: ~0.10%
    • 373: ~0.30%
    • 374: ~0.10%
    • 375: ~0.50%
    • 376: ~0.10%
    • 377: ~0.40%
    • 378: ~0.10%
    • 379: ~0.40%
    • 380: ~0.30%
    • 381: ~0.30%
    • 382: ~0.10%
    • 383: ~0.20%
    • 384: ~0.20%
    • 385: ~0.40%
    • 387: ~0.20%
    • 390: ~0.30%
    • 391: ~0.10%
    • 392: ~0.50%
    • 393: ~0.20%
    • 394: ~0.10%
    • 395: ~0.20%
    • 397: ~0.10%
    • 398: ~0.10%
    • 399: ~0.30%
    • 400: ~0.20%
    • 401: ~0.10%
    • 405: ~0.20%
    • 407: ~0.30%
    • 408: ~0.10%
    • 411: ~0.20%
    • 412: ~0.10%
    • 413: ~0.10%
    • 414: ~0.40%
    • 415: ~0.30%
    • 416: ~0.10%
    • 418: ~0.40%
    • 420: ~0.30%
    • 421: ~0.40%
    • 422: ~0.30%
    • 423: ~0.40%
    • 425: ~0.50%
    • 426: ~0.10%
    • 427: ~0.20%
    • 428: ~0.20%
    • 429: ~0.10%
    • 430: ~0.20%
    • 432: ~0.10%
    • 433: ~0.10%
    • 434: ~0.30%
    • 435: ~0.20%
    • 436: ~0.50%
    • 437: ~0.30%
    • 438: ~0.40%
    • 440: ~0.40%
    • 442: ~0.10%
    • 444: ~0.40%
    • 445: ~0.10%
    • 446: ~0.20%
    • 447: ~0.10%
    • 448: ~0.10%
    • 449: ~0.20%
    • 450: ~0.20%
    • 451: ~0.10%
    • 452: ~0.20%
    • 453: ~0.30%
    • 454: ~0.20%
    • 455: ~0.20%
    • 456: ~0.20%
    • 457: ~0.30%
    • 458: ~0.10%
    • 459: ~0.30%
    • 460: ~0.10%
    • 463: ~0.40%
    • 464: ~0.20%
    • 465: ~0.20%
    • 468: ~0.30%
    • 469: ~0.10%
    • 470: ~0.10%
    • 475: ~0.50%
    • 476: ~0.30%
    • 478: ~0.10%
    • 479: ~0.20%
    • 480: ~0.10%
    • 482: ~0.10%
    • 483: ~0.40%
    • 484: ~0.60%
    • 485: ~0.70%
    • 487: ~0.30%
    • 488: ~0.20%
    • 489: ~0.10%
    • 491: ~0.60%
    • 492: ~0.80%
    • 493: ~0.50%
    • 498: ~0.20%
    • 499: ~0.20%
    • 500: ~0.20%
    • 501: ~0.20%
    • 502: ~0.10%
    • 503: ~0.20%
    • 504: ~0.10%
    • 505: ~0.20%
    • 506: ~0.10%
    • 508: ~0.30%
    • 511: ~0.20%
    • 512: ~0.30%
    • 514: ~0.10%
    • 516: ~0.20%
    • 517: ~0.40%
    • 519: ~0.90%
    • 520: ~0.80%
    • 521: ~1.00%
    • 522: ~0.10%
    • 523: ~0.20%
    • 524: ~0.20%
    • 525: ~0.30%
    • 528: ~0.10%
    • 529: ~0.10%
    • 531: ~0.10%
    • 532: ~0.10%
    • 533: ~0.20%
    • 535: ~0.10%
    • 536: ~0.10%
    • 539: ~0.10%
    • 540: ~0.20%
    • 541: ~0.10%
    • 543: ~0.30%
    • 544: ~0.20%
    • 545: ~0.40%
    • 546: ~0.50%
    • 547: ~0.20%
    • 548: ~0.30%
    • 549: ~0.10%
    • 550: ~0.20%
    • 551: ~0.70%
    • 552: ~0.30%
    • 554: ~0.30%
    • 555: ~0.30%
    • 556: ~0.10%
    • 558: ~0.10%
    • 559: ~0.40%
    • 561: ~0.10%
    • 562: ~0.10%
    • 564: ~0.10%
    • 565: ~0.10%
    • 566: ~0.20%
    • 567: ~0.20%
    • 568: ~0.20%
    • 570: ~0.20%
    • 572: ~0.10%
    • 573: ~0.10%
    • 574: ~0.10%
    • 578: ~0.30%
  • Samples:
    sentence_0 label
    ) 306
    transport of freight over sea and coastal waters 278
    319
  • Loss: BatchAllTripletLoss

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • num_train_epochs: 4
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

BatchAllTripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification}, 
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}