SentenceTransformer based on google-bert/bert-base-multilingual-cased
This is a sentence-transformers model finetuned from google-bert/bert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-multilingual-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("anhtuansh/bert-base-multilingual-Financial-Matryoshka-2-v2")
# Run inference
sentences = [
'Thẩm định nội dung điều chỉnh báo cáo nghiên cứu khả thi, quyết định phê duyệt điều chỉnh dự án PPP do nhà đầu tư đề xuất có thể nộp hồ sơ Trực tiếp',
'Thẩm định nội dung điều chỉnh báo cáo nghiên cứu khả thi, quyết định phê duyệt điều chỉnh dự án PPP do nhà đầu tư đề xuất có cách thức nộp hồ sơ như thế nào? ',
'Tiếp tục hưởng trợ cấp thất nghiệp do cấp nào thực hiện? ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1001 |
cosine_accuracy@3 | 0.2904 |
cosine_accuracy@5 | 0.4779 |
cosine_accuracy@10 | 0.951 |
cosine_precision@1 | 0.1001 |
cosine_precision@3 | 0.0968 |
cosine_precision@5 | 0.0956 |
cosine_precision@10 | 0.0951 |
cosine_recall@1 | 0.1001 |
cosine_recall@3 | 0.2904 |
cosine_recall@5 | 0.4779 |
cosine_recall@10 | 0.951 |
cosine_ndcg@10 | 0.4352 |
cosine_mrr@10 | 0.2826 |
cosine_map@100 | 0.2844 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1005 |
cosine_accuracy@3 | 0.2899 |
cosine_accuracy@5 | 0.483 |
cosine_accuracy@10 | 0.9526 |
cosine_precision@1 | 0.1005 |
cosine_precision@3 | 0.0966 |
cosine_precision@5 | 0.0966 |
cosine_precision@10 | 0.0953 |
cosine_recall@1 | 0.1005 |
cosine_recall@3 | 0.2899 |
cosine_recall@5 | 0.483 |
cosine_recall@10 | 0.9526 |
cosine_ndcg@10 | 0.4368 |
cosine_mrr@10 | 0.284 |
cosine_map@100 | 0.2858 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0993 |
cosine_accuracy@3 | 0.2883 |
cosine_accuracy@5 | 0.4743 |
cosine_accuracy@10 | 0.9554 |
cosine_precision@1 | 0.0993 |
cosine_precision@3 | 0.0961 |
cosine_precision@5 | 0.0949 |
cosine_precision@10 | 0.0955 |
cosine_recall@1 | 0.0993 |
cosine_recall@3 | 0.2883 |
cosine_recall@5 | 0.4743 |
cosine_recall@10 | 0.9554 |
cosine_ndcg@10 | 0.4356 |
cosine_mrr@10 | 0.2819 |
cosine_map@100 | 0.2835 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0978 |
cosine_accuracy@3 | 0.289 |
cosine_accuracy@5 | 0.4753 |
cosine_accuracy@10 | 0.9555 |
cosine_precision@1 | 0.0978 |
cosine_precision@3 | 0.0963 |
cosine_precision@5 | 0.0951 |
cosine_precision@10 | 0.0956 |
cosine_recall@1 | 0.0978 |
cosine_recall@3 | 0.289 |
cosine_recall@5 | 0.4753 |
cosine_recall@10 | 0.9555 |
cosine_ndcg@10 | 0.435 |
cosine_mrr@10 | 0.2811 |
cosine_map@100 | 0.2827 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0955 |
cosine_accuracy@3 | 0.2863 |
cosine_accuracy@5 | 0.4743 |
cosine_accuracy@10 | 0.9552 |
cosine_precision@1 | 0.0955 |
cosine_precision@3 | 0.0954 |
cosine_precision@5 | 0.0949 |
cosine_precision@10 | 0.0955 |
cosine_recall@1 | 0.0955 |
cosine_recall@3 | 0.2863 |
cosine_recall@5 | 0.4743 |
cosine_recall@10 | 0.9552 |
cosine_ndcg@10 | 0.4341 |
cosine_mrr@10 | 0.2799 |
cosine_map@100 | 0.2815 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 181,350 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 10 tokens
- mean: 107.98 tokens
- max: 512 tokens
- min: 12 tokens
- mean: 37.24 tokens
- max: 448 tokens
- Samples:
positive anchor Tính tiền cấp quyền khai thác tài nguyên nước đối với công trình chưa vận hành cấp tỉnh có yêu cầu là .
Tính tiền cấp quyền khai thác tài nguyên nước đối với công trình chưa vận hành cấp tỉnh có yêu cầu gì?
Xóa đăng ký hành nghề và thu hồi Thẻ công chứng viên trường hợp công chứng viên không còn hành nghề tại tổ chức hành nghề công chứng được thực hiện mức độ trực tuyến Toàn trình
Xóa đăng ký hành nghề và thu hồi Thẻ công chứng viên trường hợp công chứng viên không còn hành nghề tại tổ chức hành nghề công chứng được thực hiện mức độ mấy?
Thủ tục cấp giấy chứng nhận đủ điều kiện kinh doanh hoạt động thể thao đối với môn Mô tô nước trên biển có trình tự thực hiện như sau: Doanh nghiệp gửi hồ sơ đến cơ quan chuyên môn về thể dục, thể thao thuộc Ủy ban nhân nhân cấp tỉnh nơi đăng ký địa điểm kinh doanh hoạt động thể thao hoặc nơi doanh nghiệp có trụ sở chính trong trường hợp doanh nghiệp có nhiều địa điểm kinh doanh hoạt động thể thao.Cơ quan chuyên môn về thể dục, thể thao thuộc Ủy ban nhân dân cấp tỉnh (sau đây gọi là cơ quan cấp Giấy chứng nhận đủ điều kiện) cấp cho doanh nghiệp giấy tiếp nhận hồ sơ. Trường hợp hồ sơ cần sửa đổi, bổ sung, cơ quan cấp Giấy chứng nhận đủ điều kiện thông báo trực tiếp hoặc bằng văn bản những nội dung cần sửa đổi, bổ sung đến doanh nghiệp trong thời hạn 03 ngày làm việc, kể từ ngày nhận hồ sơ.
Thủ tục cấp giấy chứng nhận đủ điều kiện kinh doanh hoạt động thể thao đối với môn Mô tô nước trên biển có trình tự thực hiện như thế nào?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
Unnamed Dataset
- Size: 20,150 evaluation samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 15 tokens
- mean: 101.71 tokens
- max: 512 tokens
- min: 14 tokens
- mean: 36.81 tokens
- max: 191 tokens
- Samples:
positive anchor Điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ đã ban hành trước ngày 01 tháng 7 năm 2004 có yêu cầu hồ sơ gồm: 1. Hồ sơ do người sử dụng đất nộp 01 bộ tại Sở Tài nguyên và Môi trường gồm:Văn bản đề nghị điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ ban hành trước ngày 01 tháng 7 năm 2004 theo Mẫu số 03 ban hành kèm theo Thông tư 33/2017/TT-BTNMTBản sao quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ đã ban hành trước ngày 01 tháng 7 năm 2004Bản sao giấy chứng nhận quyền sử dụng đất hoặc Giấy chứng nhận quyền sở hữu nhà ở và quyền sử dụng đất ở hoặc Giấy chứng nhận quyền sử dụng đất, quyền sở hữu nhà ở và tài sản khác gắn liền với đất đã cấp (nếu có)Bản sao giấy phép đầu tư hoặc giấy chứng nhận đầu tư hoặc giấy đăng ký kinh doanh hoặc văn bản chấp thuận chủ trương đầu tư hoặc quyết định chủ trương đầu tư hoặc giấy chứng nhận đăng ký đầu tư đã cấp (nếu có)2. Hồ sơ do Sở Tài nguyên và Môi trường lập để trình Ủy ban nhân dân cấp tỉnh gồm:Tờ trình theo Mẫu số 04 ban hành kèm theo Thông tư 33/2017/TT-BTNMTCác giấy tờ do người sử dụng đất nộp tại mục 1 nêu trên;Văn bản của cơ quan có thẩm quyền đối với trường hợp người sử dụng đất không đề nghị điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ;Trích lục bản đồ địa chính thửa đất hoặc trích đo địa chính thửa đất (đã có trong hồ sơ giao đất, cho thuê đất trước đây).3. Hồ sơ thẩm định do Ủy ban nhân dân cấp tỉnh lập gửi Bộ Tài nguyên và Môi trường đối với trường hợp điều chỉnh quyết định mà phải báo cáo Thủ tướng Chính phủ gồm:Tờ trình theo Mẫu số 05 ban hành kèm theo Thông tư 33/2017/TT-BTNMTCác giấy tờ do người sử dụng đất nộp theo quy định tại mục 1 nêu trênVăn bản của cơ quan có thẩm quyền đề nghị điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ (nếu có)Trích lục bản đồ địa chính thửa đất hoặc trích đo địa chính thửa đất (đã có trong hồ sơ giao đất, cho thuê đất trước đây)4. Hồ sơ do Bộ Tài nguyên và Môi trường lập để trình Thủ tướng Chính phủ gồm:Tờ trình Thủ tướng Chính phủCác giấy tờ do Ủy ban nhân dân cấp tỉnh lập theo quy định tại mục 3 nêu trênVăn bản của Bộ, ngành có liên quan góp ý về việc đề nghị điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ đối với dự án phải xin ý kiến các Bộ, ngành (nếu có)
Điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ đã ban hành trước ngày 01 tháng 7 năm 2004 có yêu cầu thành phần hồ sơ những gì?
Thủ tục thông báo hủy kết quả phong phẩm hoặc suy cử chức sắc đối với các trường hợp quy định tại khoản 2 Điều 33 của Luật tín ngưỡng, tôn giáo được thực hiện mức độ trực tuyến Toàn trình
Thủ tục thông báo hủy kết quả phong phẩm hoặc suy cử chức sắc đối với các trường hợp quy định tại khoản 2 Điều 33 của Luật tín ngưỡng, tôn giáo được thực hiện mức độ mấy?
Thủ tục đính chính Giấy chứng nhận đã cấp có phí, lệ phí là: Trực tiếp:
Thủ tục đính chính Giấy chứng nhận đã cấp có phí, lệ phí là bao nhiêu?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.9994 | 708 | 0.0012 | 0.2727 | 0.2739 | 0.2781 | 0.2744 | 0.2762 |
1.9988 | 1416 | 0.0006 | 0.2827 | 0.2835 | 0.2858 | 0.2815 | 0.2844 |
Framework Versions
- Python: 3.10.10
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for anhtuansh/bert-base-multilingual-Financial-Matryoshka-2-v2
Base model
google-bert/bert-base-multilingual-casedEvaluation results
- Cosine Accuracy@1 on dim 768self-reported0.100
- Cosine Accuracy@3 on dim 768self-reported0.290
- Cosine Accuracy@5 on dim 768self-reported0.478
- Cosine Accuracy@10 on dim 768self-reported0.951
- Cosine Precision@1 on dim 768self-reported0.100
- Cosine Precision@3 on dim 768self-reported0.097
- Cosine Precision@5 on dim 768self-reported0.096
- Cosine Precision@10 on dim 768self-reported0.095
- Cosine Recall@1 on dim 768self-reported0.100
- Cosine Recall@3 on dim 768self-reported0.290