SpanMarker
This is a SpanMarker model that can be used for Named Entity Recognition.
Model Details
Model Description
- Model Type: SpanMarker
- Maximum Sequence Length: 512 tokens
- Maximum Entity Length: 8 words
Model Sources
- Repository: SpanMarker on GitHub
- Thesis: SpanMarker For Named Entity Recognition
Uses
Direct Use for Inference
from span_marker import SpanMarkerModel
# Download from the ๐ค Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("None")
Downstream Use
You can finetune this model on your own dataset.
Click to expand
from span_marker import SpanMarkerModel, Trainer
# Download from the ๐ค Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
Training Details
Framework Versions
- Python: 3.10.9
- SpanMarker: 1.5.0
- Transformers: 4.36.2
- PyTorch: 2.1.2+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.