resnet-50-image-classification

This model is a fine-tuned version of microsoft/resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3093
  • Accuracy: 0.9408

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 101010
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 338 2.2768 0.5172
2.2806 2.0 676 2.0111 0.6903
1.8538 3.0 1014 1.2525 0.7467
1.8538 4.0 1352 0.6251 0.8578
0.8758 5.0 1690 0.3761 0.8967
0.4181 6.0 2028 0.2852 0.9144
0.4181 7.0 2366 0.2492 0.9244
0.2458 8.0 2704 0.2169 0.9364
0.1721 9.0 3042 0.2121 0.9358
0.1721 10.0 3380 0.2052 0.9403
0.1089 11.0 3718 0.2075 0.9414
0.0783 12.0 4056 0.2164 0.9367
0.0783 13.0 4394 0.2274 0.9381
0.0573 14.0 4732 0.2196 0.9433
0.0465 15.0 5070 0.2415 0.9381
0.0465 16.0 5408 0.2370 0.9433
0.0375 17.0 5746 0.2521 0.94
0.0288 18.0 6084 0.2533 0.9411
0.0288 19.0 6422 0.2608 0.9381
0.0253 20.0 6760 0.2602 0.9397
0.0207 21.0 7098 0.2712 0.94
0.0207 22.0 7436 0.2584 0.9408
0.0187 23.0 7774 0.2703 0.9419
0.012 24.0 8112 0.2772 0.9422
0.012 25.0 8450 0.2712 0.9419
0.0174 26.0 8788 0.2774 0.9422
0.0137 27.0 9126 0.2857 0.9414
0.0137 28.0 9464 0.2796 0.9428
0.0111 29.0 9802 0.3008 0.9367
0.0106 30.0 10140 0.2938 0.9369
0.0106 31.0 10478 0.2863 0.9406
0.0079 32.0 10816 0.2903 0.9425
0.0078 33.0 11154 0.2961 0.9419
0.0078 34.0 11492 0.2882 0.9417
0.0056 35.0 11830 0.2974 0.9406
0.0041 36.0 12168 0.2997 0.9419
0.0039 37.0 12506 0.3123 0.9367
0.0039 38.0 12844 0.3009 0.9408
0.0036 39.0 13182 0.3009 0.9422
0.0055 40.0 13520 0.3093 0.9408

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
54
Safetensors
Model size
23.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for andikamandalaa/resnet-50-image-classification

Finetuned
(140)
this model