law-game-evidence-replacement-finetune
This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 3.4253
- eval_map: 0.8264
- eval_map_50: 0.8488
- eval_map_75: 0.8441
- eval_map_small: 0.5688
- eval_map_medium: 0.9527
- eval_map_large: 0.8547
- eval_mar_1: 0.7043
- eval_mar_10: 0.9575
- eval_mar_100: 0.9727
- eval_mar_small: 0.5949
- eval_mar_medium: 0.9738
- eval_mar_large: 0.9894
- eval_map_evidence: -1.0
- eval_mar_100_evidence: -1.0
- eval_map_ambulance: 0.9802
- eval_mar_100_ambulance: 0.9899
- eval_map_artificial_target: 0.9267
- eval_mar_100_artificial_target: 0.9572
- eval_map_cartridge: 0.9742
- eval_mar_100_cartridge: 0.9949
- eval_map_gun: 0.9165
- eval_mar_100_gun: 0.9403
- eval_map_knife: 0.8599
- eval_mar_100_knife: 0.931
- eval_map_police: 0.9935
- eval_mar_100_police: 0.9959
- eval_map_traffic: 0.9586
- eval_mar_100_traffic: 0.9726
- eval_map_traffic_cone: 0.0013
- eval_mar_100_traffic_cone: 1.0
- eval_runtime: 50.5267
- eval_samples_per_second: 16.467
- eval_steps_per_second: 2.058
- epoch: 28.0
- step: 5152
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 50
Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.3.1+cu121
- Tokenizers 0.19.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for anastasispk/law-game-evidence-replacement-finetune-v1
Base model
PekingU/rtdetr_r50vd_coco_o365