anantg's picture
anantg/Mixtral-Finetuned
b2b685c verified
metadata
license: apache-2.0
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
datasets:
  - generator
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model-index:
  - name: Mixtral-Finetune-Output
    results: []

Mixtral-Finetune-Output

This model is a fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 0.03
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.5745 0.01 10 1.4701
1.5372 0.02 20 1.4541
1.4147 0.03 30 1.4433
1.423 0.04 40 1.4366
1.5318 0.05 50 1.4326
1.334 0.06 60 1.4296
1.364 0.07 70 1.4244
1.332 0.08 80 1.4194
1.3742 0.09 90 1.4163
1.4497 0.1 100 1.4124
1.4145 0.1 110 1.4098
1.4224 0.11 120 1.4050
1.4013 0.12 130 1.4017
1.547 0.13 140 1.4020
1.4969 0.14 150 1.3967
1.5716 0.15 160 1.3943
1.3677 0.16 170 1.3915
1.3789 0.17 180 1.3901
1.3188 0.18 190 1.3869
1.3317 0.19 200 1.3846
1.2552 0.2 210 1.3809
1.2584 0.21 220 1.3788
1.3958 0.22 230 1.3776
1.3345 0.23 240 1.3755
1.3562 0.24 250 1.3723
1.343 0.25 260 1.3726
1.3705 0.26 270 1.3695
1.5719 0.27 280 1.3687
1.3634 0.28 290 1.3652
1.4465 0.29 300 1.3668
1.3949 0.29 310 1.3642
1.3147 0.3 320 1.3631
1.368 0.31 330 1.3613
1.3482 0.32 340 1.3603
1.3143 0.33 350 1.3591
1.4717 0.34 360 1.3568
1.2089 0.35 370 1.3555
1.4223 0.36 380 1.3529
1.3895 0.37 390 1.3523
1.309 0.38 400 1.3504
1.3698 0.39 410 1.3487
1.2834 0.4 420 1.3468
1.2747 0.41 430 1.3471
1.3167 0.42 440 1.3460
1.3232 0.43 450 1.3438
1.3628 0.44 460 1.3422
1.3828 0.45 470 1.3417
1.3756 0.46 480 1.3412
1.385 0.47 490 1.3418
1.3622 0.48 500 1.3392
1.3322 0.49 510 1.3381
1.368 0.49 520 1.3365
1.3373 0.5 530 1.3355
1.4931 0.51 540 1.3354
1.3986 0.52 550 1.3333
1.3053 0.53 560 1.3312
1.2736 0.54 570 1.3297
1.2903 0.55 580 1.3298
1.328 0.56 590 1.3290
1.4081 0.57 600 1.3290
1.2852 0.58 610 1.3279
1.3636 0.59 620 1.3268
1.3448 0.6 630 1.3265
1.2061 0.61 640 1.3252
1.3519 0.62 650 1.3244
1.3632 0.63 660 1.3248
1.3784 0.64 670 1.3238
1.3349 0.65 680 1.3216
1.2603 0.66 690 1.3215
1.3566 0.67 700 1.3224
1.316 0.68 710 1.3208
1.1818 0.69 720 1.3203
1.3631 0.69 730 1.3190
1.3234 0.7 740 1.3184
1.2759 0.71 750 1.3177
1.3332 0.72 760 1.3177
1.2764 0.73 770 1.3165
1.2056 0.74 780 1.3155
1.4285 0.75 790 1.3158
1.3733 0.76 800 1.3150
1.2735 0.77 810 1.3143
1.3502 0.78 820 1.3137
1.093 0.79 830 1.3130
1.3451 0.8 840 1.3123
1.2942 0.81 850 1.3119
1.3258 0.82 860 1.3117
1.2139 0.83 870 1.3114
1.2773 0.84 880 1.3109
1.2324 0.85 890 1.3101
1.4134 0.86 900 1.3097
1.3464 0.87 910 1.3095
1.2972 0.88 920 1.3090
1.3305 0.88 930 1.3086
1.3394 0.89 940 1.3082
1.3666 0.9 950 1.3078
1.3703 0.91 960 1.3077
1.3019 0.92 970 1.3077
1.2618 0.93 980 1.3073
1.2808 0.94 990 1.3071
1.2927 0.95 1000 1.3069
1.2688 0.96 1010 1.3067
1.3312 0.97 1020 1.3065
1.2406 0.98 1030 1.3064
1.3341 0.99 1040 1.3062
1.3531 1.0 1050 1.3062

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0